Liquid-mediated particle capture by nonwoven filter media for automotive engine intake air filtration

2021 ◽  
pp. 152808372110610
Author(s):  
Shivendra Yadav ◽  
Dipayan Das

This article reports on development, characterization, and performance of liquid-treated nonwoven air filter media for automotive engine intake application. A polypropylene fiber-based needle-punched nonwoven fabric was prepared for treatment with four viscous liquids (glycerol, SAE 20W/50 engine oil, PEG 400, and deionized water) by liquid spraying technique. The filtration performance was evaluated in terms of initial and final gravimetric filtration efficiencies, fractional filtration efficiency, evolution of pressure drop, and dust holding capacity. The liquid-treated filter media registered higher gravimetric as well as fractional filtration efficiency and higher dust holding capacity as compared to the untreated ones. The initial and final gravimetric filtration efficiencies were found to be directly related to liquid add-on via a power law relationship. The liquid-treated filter media also exhibited higher fractional filtration efficiency than their untreated counterparts for all sizes of tested particles. Interestingly, the increase of fractional efficiency was more for smaller particles as compared to larger ones. This was explained quantitatively through single fiber efficiency due to adhesion. The viscosity of liquid was found to be a very crucial parameter as the dust deposition morphology was contingent to the flow of liquid onto the filter media. The stickiest liquid yielded highest filtration efficiencies, displayed slowest rise of pressure drop, and exhibited highest dust holding capacity.

2020 ◽  
pp. 152808372092377
Author(s):  
Bilal Zaarour ◽  
Hussen Tina ◽  
Lei Zhu ◽  
XiangYu Jin

Engineering the surface morphology of fibers has been attracting significant consideration in various areas and applications. In this study, polyvinylidene fluoride (PVDF) branched nanofibers with a diameter of less than 50 nm are electrospun directly at a low relative humidity by adding tetrabutylammonium chloride. The effects of the branched structure on the specific surface area and pore size distribution are investigated, and the filtration properties of the air filter based on branched nanofiber webs with different basis weights are studied. The results exhibit that the air filter based on PVDF branched nanofibers with the basis weight of 1 g/m2 has an outstanding filtration efficiency (99.999%) to 0.26 µm sodium chloride particles under the pressure drop of 126.17 Pa. We believe that this study can be used as a useful reference for the preparation of branched nanofibers through one-step electrospinning.


Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3257
Author(s):  
Fabrice N. H. Karabulut ◽  
Günther Höfler ◽  
Naveen Ashok Chand ◽  
Gareth W. Beckermann

Electrospun nanofibres can outperform their melt-blown counterparts in many applications, especially air filtration. The different filtration mechanisms of nanofibres are particularly important when it comes to the air filtration of viruses (such as COVID-19) and bacteria. In this work, we present an electrospun nanofibre filter media, FilterLayrTM by NanoLayr Ltd., containing poly(methyl methacrylate)/ethylene vinyl alcohol nanofibres. The outstanding uniformity of the nanofibres was indicated by the good correlation between pressure drop (ΔP) and areal weight with R2 values in the range of 0.82 to 0.98 across various test air velocities. By adjusting the nanofibre areal weight (basis weight), the nanofibre filter media was shown to meet the particle filtration efficiency and breathability requirements of the following internationally accepted facemask and respirator standards: N95 respirator facemask performance in accordance with NIOSH 42CFR84 (filtration efficiency of up to 98.10% at a pressure drop of 226 Pa and 290 Pa at 85 L·min−1 and 120 L·min−1, respectively), Level 2 surgical facemask performance in accordance with ASTM F2299 (filtration efficiency of up to 99.97% at 100 nm particle size and a pressure drop of 44 Pa at 8 L·min−1), and Level 2 filtration efficiency and Level 1 breathability for barrier face coverings in accordance with ASTM F3502 (filtration efficiency of up to 99.68% and a pressure drop of 133 Pa at 60 L·min−1), with Level 2 breathability being achievable at lower nanofibre areal weights.


Author(s):  
T. Dziubak

The aim of this study is to provide an experimental properties evaluation of a standard filter material (cellulose) and materials with fiber layer addition with small diameters (nanofibers). Filter media, including cellulose, used in the internal combustion engine inlet air filtration are made of high diameter fibres, approx. 15 µm. Significantly higher separation and filtration efficiency performance are obtained for materials with lower fibre diameters (nanofibres), however, at the expense of a significantly higher pressure drop, affecting the engine performance. Filter media manufacturers mainly specify the structure parameters (pore size, air permeability and thickness), without giving any information on the dust filtration performance and rate. The literature includes test results for models of different filter media structures. Filtration process modelling using polydisperse dust with particles of different shape and density and irregular filter media structure is possible using advanced computer techniques, however, the process is complex and requires many simplifications. Test results can be applied directly in the automotive industry. The data can be obtained by experimental tests on filter medium specimens, complete filter elements or air filters which are costly and time-consuming tests, however, those test methods are the most reliable. Conditions and testing methodology for intake air filter materials used in internal combustion engines were developed. Filtration and flow resistance efficiency and accuracy were done depending on test dust mass stopped per unit area. Tested materials filtration efficiency was assessed by a filtration quality factor, which includes experimentally determined efficiency and accuracy as well as flow resistance values. Much higher efficiency and filtration accuracy of dust grains below 5 µm in filtration materials with nanofibers addition compared to standard filtration material (filter paper) were demonstrated. For the same flow resistance values, filter materials with nanofibers addition accumulate smaller dust mass than standard filter paper. Usage of materials with nanofibers addition used in motor vehicles intake air filtration ensures their high efficiency and accuracy. It minimises its components wear, but at the expense of faster flow resistance increase, which shortens filter life and increases filter replacement frequency. Results obtained during the experimental research partly fill the gap when it comes to the basic material properties used in internal combustion engines intake air filter partitions production.


2002 ◽  
Vol os-11 (3) ◽  
pp. 1558925002OS-01 ◽  
Author(s):  
Edward Vaughn ◽  
Gayetri Ramachandran

This paper deals with ASHRAE filters used in air filtration applications and summarizes, on the basis of current research work, some of the reasons for the disagreement that exists among filter manufacturers concerning the properties and performance of various types of air filter media in general, glass and synthetic media in particular. Attention is also drawn to some important items that need to be incorporated in test methods and to some factors that could be affecting filter performance


2017 ◽  
Vol 5 (33) ◽  
pp. 17482-17491 ◽  
Author(s):  
Zhi-Chao Xiong ◽  
Ri-Long Yang ◽  
Ying-Jie Zhu ◽  
Fei-Fei Chen ◽  
Li-Ying Dong

Ultralong hydroxyapatite nanowire-based air filter paper with a low pressure drop and high removal efficiencies for PM2.5 and PM10 has been developed.


2020 ◽  
Vol 20 (7) ◽  
pp. 4376-4380 ◽  
Author(s):  
Byeong Cheol Son ◽  
Chan Hee Park ◽  
Cheol Sang Kim

Recently, air quality is seriously worsening because of micro dust. As a result, respiratory and heart disease patients are also increasing every year. Therefore, the development of a highly efficient air filter media is required. In this study, we developed an antibacterial air filter media with activated carbon (AC) and cinnamon essential oil (CO). 12 wt.% polyurethane (PU) solution mixed with CO and AC was electrospun to prepare the AC+CO+PU nanofiber mat. We studied various characteristics of the AC+CO+PU nanofibrous mat. The surface morphology of mats in different concentration ratios was observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). We confirmed the antimicrobial activity of the nanofibrous mat using zone of inhibition test with Staphylococcus aureus and Escherichia coli. Air filter test was carried out to observe air filtration efficiency and pressure drop. This data was used to calculate the quality factor of the fabricated nanofiber air filter media. The fabricated antimicrobial nanofiber air filter media can be applied to various fields such as personal masks, air purification devices and bio applications.


2020 ◽  
pp. 152808372096141
Author(s):  
Chi Zou ◽  
Yunlong Shi ◽  
Xiaoming Qian

The glass fiber felt made through flame blowing process was characterized on morphology and its filtration performance. Fiber diameter has been measured through SEM and BET methods. Theoretical calculations on pressure drop and filtration efficiency were developed and compared with the experimental measurement. The discrepancy between the calculated results and measurement on filtration efficiency is derived from the presence of fine fiber (<0.5µm) in the glass fiber felt, which contributes to the actual high filtration efficiency in measurement. The multiple micro-layered structure in glass fiber felt, which improves the dust holding capacity and enables glass fiber felt as a depth filter. Glass fiber felt showed a longer duration of the slow increase region for pressure drop build-up comparing to other filter materials with lower averaged pressure drop through its filtration service life. Furthermore, quality factor calculation has been developed for prediction on the energy cost performance of the filters based on the pressure drop, separation efficiency and dust holding capacity.


2008 ◽  
Vol 9 (1) ◽  
pp. 34-38 ◽  
Author(s):  
Xinpeng Wang ◽  
Kitai Kim ◽  
Changhwan Lee ◽  
Jooyong Kim

Sign in / Sign up

Export Citation Format

Share Document