scholarly journals LINC00942 Promotes Tumor Proliferation and Metastasis in Lung Adenocarcinoma via FZD1 Upregulation

2021 ◽  
Vol 20 ◽  
pp. 153303382097752
Author(s):  
Ronghua Wang ◽  
Xiuyun Wang ◽  
Jingtao Zhang ◽  
Yanpei Liu

Background: Long non-coding RNAs (lncRNAs) have been reported to play important roles in the progression of human cancers. Herein, bioinformatic analysis identified that LINC00942 was a highly overexpressed lncRNA in lung adenocarcinoma (LUAD). The present study aimed to explore the roles and possible molecular mechanisms of LINC00942 in LUAD. Methods: First, on the basis of TCGA database, the expression and prognosis of LINC00942 were analyzed in LUAD tissues. Then, si-LINC00942 was transfected into A549 and H1299 cells to knockdown the expression of LINC00942. Cell viability was detected by MTT assay. Flow cytometry was used to analyze cell apoptosis. The expressions of PCNA, Bax, Bcl-2, and wnt/β-catenin pathway proteins were detected by western blotting. Dual-luciferase reporter assay was used to evaluate the regulatory relationship between LINC00942 and miR-5006-5p, or miR-5006-5p and FZD1. Results: We discovered that LINC00942 was up-regulated in LUAD tissues compared with adjacent tissues. Besides, we found the increased LINC00942 expression was associated with poor survival. In addition, silencing of LINC00942 suppressed the proliferation, migration, invasion and facilitated the apoptosis of A549 and H1299 cells. Moreover, silencing of LINC00942 repressed the expression of PCNA, Bcl-2, and enhanced Bax expression in A549 and H1299 cells. Mechanically, LINC00942 exerted its effects via enhancing Wnt signaling. LINC00942 functioned as competing endogenous RNA (ceRNA) by binding to miR-5006-5p, upregulating the expression of FZD1, which was a direct target of miR-5006-5p. Conclusion: Our findings indicated that LINC00942/miR-5006-5p/FZD1 axis played important roles in LUAD growth through enhancing Wnt signaling. LINC00942/miR-5006-5p/FZD1 axis might serve as a potential biomarker and therapeutic target for LUAD treatment.

2021 ◽  
Vol 20 ◽  
pp. 153303382098586
Author(s):  
Xuhui Wu ◽  
Gongzhi Wu ◽  
Huaizhong Zhang ◽  
Xuyang Peng ◽  
Bin Huang ◽  
...  

Objective: We aimed to investigate the mechanism of the regulatory axis of miR-196b/AQP4 underlying the invasion and migration of lung adenocarcinoma (LUAD) cells. Methods: LUAD miRNA and mRNA expression profiles were downloaded from TCGA database and then differential analysis was used to identify the target miRNA. Target gene for the miRNA was obtained via prediction using 3 bioinformatics databases and intersection with the differentially expressed mRNAs searched from TCGA-LUAD. Then, qRT-PCR and western blot were used to validate the expression of miR-196b and AQP4. Dual-luciferase reporter assay was performed to confirm the targeting relationship between miR-196b and AQP4. Transwell assay was used to investigate the migration and invasion of LUAD cells. Results: MiR-196b was screened out by differential and survival analyses, and the downstream target gene AQP4 was identified. In LUAD, miR-196b was highly expressed while AQP4 was poorly expressed. Besides, overexpression of miR-196b promoted cell invasion and migration, while overexpression of AQP4 had negative effects. Moreover, the results of the dual-luciferase reporter assay suggested that AQP4 was a direct target of miR-196b. In addition, we also found that overexpressing AQP4 could suppress the promotive effect of miR-196b on cancer cell invasion and migration. Conclusion: MiR-196b promotes the invasion and migration of LUAD cells by down-regulating AQP4, which helps us find new molecular targeted therapies for LUAD.


Author(s):  
Ya-Ping Xu ◽  
Ze-Ning Dong ◽  
Si-Wei Wang ◽  
Yi-Min Zheng ◽  
Chi Zhang ◽  
...  

Abstract Background Accumulating evidence indicates that circRNAs may serve as essential regulators in the progression of several human cancers, but the function and mechanism of circRNAs in intrahepatic cholangiocarcinoma (ICC) are largely unknown. Methods RNA-seq was used to assess differentially expressed circRNAs between 4 ICC and peritumor tissues. Quantitative RT-PCR and in situ hybridization were used to determine the circHMGCS1–016 expression in ICC tissues. The function and mechanism of circHMGCS1–016 were further identified via in vivo experiments. The clinical characteristics and prognostic significance of circHMGCS1–016 were analyzed by a retrospective study. The functions of circHMGCS1–016 were assessed via modifying circRNA expression in ICC cells. Moreover, the molecular mechanisms of circHMGCS1–016 in ICC cells were explored by circRNA precipitation, miRNA immunoprecipitation, SILAC and luciferase reporter assays. Results We identified that compared with peritumor tissues, ICC tissues expressed hsa_circ_0008621 (circHMGCS1–016) high by RNA-seq, which was further identified by qRT-PCR and in situ hybridization. Moreover, the expression of circHMGCS1–016 was revealed to be associated with survival and recurrence of ICC patients. By regulating circHMGCS1–016 expression, we found that elevated circHMGCS1–016 promoted ICC development both in vitro and in vivo. By SILAC and circRNA-pull down, we demonstrated that circHMGCS1–016 induced ICC cell invasion and reshaped the tumor immune microenvironment via the miR-1236-3p/CD73 and GAL-8 axis. In ICC tissues, we uncovered that a high level of circHMGCS1–016 was positively associated with CD73 and GAL-8 expression and negatively related to the CD8+ T cells infiltration, which was further validated by establishing a humanized mouse tumor model. Importantly, we displayed that ICC patients with high levels of circHMGCS1–016 in tumor tissues benefited less from anti-PD1 treatment compared to those with low levels of circHMGCS1–016. Conclusions CircHMGCS1–016 is a forceful contributor in ICC development and immune tolerance via miR-1236-3p/CD73 and GAL-8 axis. CircHMGCS1–016 can be explored as a new potential biomarker and therapeutic target for PD1-resistant ICC.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Chuanwu Fang ◽  
Xiaohong Wang ◽  
Dongliang Guo ◽  
Run Fang ◽  
Ting Zhu

Many studies have shown that there are many circular RNA (circRNA) expression abnormalities in osteosarcoma (OS), and this abnormality is related to the development of osteosarcoma. But at present, it is unclear as to what circITGA7 has in the OS and what it does. In this study, qRT-PCR was used to detect the expression of circITGA7, miR-370, and PIM1 mRNA in OS tissues and cells. The CCK-8 assay was used to detect the effect of circITGA7 on cell proliferation. Later, the transwell assay was used to detect cell migration and invasion. The dual-luciferase reporter assay confirmed the existence of the targeting relationship between circITGA7 and miR-370, and miR-370 and PIM1. We found that circITGA7 was upregulated in OS tissues and cell lines. Knockdown of circITGA7 weakened the cell’s ability to proliferate and metastasize. Furthermore, we observed that miR-370 was negatively regulated by circITGA7, while PIM1 was positively regulated by it. A functional assay validated that circITGA7 promoted OS progression via suppressing miR-370 and miR-370 affected OS proliferation and migration via PIM6 in OS. In summary, this study shows that circITGA7 promotes OS proliferation and metastasis via miR-370/PIM1.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Zuojun Zhang ◽  
Ming Zhao ◽  
Guojie Wang

Abstract Background Osteosarcoma is a most common bone malignant tumor which threatens children and adolescents. Circular RNAs (circRNAs) fundamentally play essential roles in the progress and development of human cancers by sponging with microRNAs (miRNAs). However, the role of circRNAs in osteosarcoma is not clear. The aim of the study was to investigate the roles and molecular mechanism of circRNAs in osteosarcoma. Results The data from qRT-PCR showed that circ_0051079 expression was higher in osteosarcoma cells and tissues compared to their normal controls. Meanwhile, bioinformatic analysis indicated that circ_0051079 was a sponge of miR-26a-5p, which was verified by luciferase activity assay. Subsequently, TGF-β1 was verified as a putative target mRNA of miR-26a-5p by luciferase assay. Cellular function assays were conducted and the findings revealed that circ_0051079/miR-26a-5p/TGF-β1 regulated osteosarcoma proliferation and metastasis. Conclusion The study demonstrated that circ_0051079 could act as an oncogene via regulating miR-26a-5p/TGF-β1 and a potential biomarker for osteosarcoma diagnose.


2019 ◽  
Author(s):  
YJ Fan ◽  
XX Li ◽  
Abd Allah A. H. Mohammed ◽  
Y Liu ◽  
Xiwu Gao

Abstract Background: Most aphids exhibit wing polyphenism in which wingless and winged morphs produce depending on the population density and host plant quality. Although the influence of environmental factors on wing polyphenism of aphids have been extensively investigated, molecular mechanisms underlining morph differentiation (i.e. wing development /degeneration), one downstream aspect of the wing polyphenism, has been poorly understood. Results: We examined the expression levels of the twenty genes involved in wing development network, and only vestigial (vg) showed significantly different expression levels in both whole-body and wall-body of third instar nymphs, with 5.4- and 16.14- fold higher expression in winged lines compared to wingless lines, respectively in Rhopalosiphum padi. vg expression was higher in winged lines compared to wingless lines in third, fourth instar nymphs and adults. Larger difference expression was observed in third (21.38-fold) and fourth (20.91-fold) instar nymphs relative to adults (3.12-fold). Suppression of vg using RNAi repressed the wing development of third winged morphs. Furthermore, dual luciferase reporter assay revealed that the miR-147 can target the vg mRNA. Modulation of miR-147b levels by microinjection of its agomir (mimic) decreased vg expression levels and repressed wing development. Conclusions: Our findings suggest that vg is essential for wing development in R. padi and that miR-147b modulates its expression.


2020 ◽  
Author(s):  
YJ Fan ◽  
XX Li ◽  
Abd Allah A. H. Mohammed ◽  
Y Liu ◽  
Xiwu Gao

Abstract Background: Most aphids exhibit wing polyphenism in which wingless and winged morphs produce depending on the population density and host plant quality. Although the influence of environmental factors on wing polyphenism of aphids have been extensively investigated, molecular mechanisms underlining morph differentiation (i.e. wing development /degeneration), one downstream aspect of the wing polyphenism , has been poorly understood. Results: We examined the expression levels of the twenty genes involved in wing development network, and only vestigial (vg ) showed significantly different expression levels in both whole-body and wall-body of third instar nymphs, with 5.4- and 16.14- fold higher expression in winged lines compared to wingless lines, respectively in Rhopalosiphum padi . vg expression was higher in winged lines compared to wingless lines in third, fourth instar nymphs and adults. Larger difference expression was observed in third (21.38-fold) and fourth (20.91-fold) instar nymphs relative to adults (3.12-fold). Suppression of vg using RNAi repressed the wing development of third winged morphs. Furthermore, dual luciferase reporter assay revealed that the miR-147 can target the vg mRNA. Modulation of miR-147b levels by microinjection of its agomir (mimic) decreased vg expression levels and repressed wing development. Conclusions : Our findings suggest that vg is essential for wing development in R. padi and that miR-147b modulates its expression. .


2021 ◽  
Vol 12 (11) ◽  
Author(s):  
Wenjie Luo ◽  
Jun Wang ◽  
Wenhao Xu ◽  
Chunguang Ma ◽  
Fangning Wan ◽  
...  

AbstractLong non-coding RNAs (lncRNAs) act as important regulators of tumorigenesis and development in bladder cancer. However, the underlying molecular mechanisms remain elusive. We previously identified a novel lncRNA signature related to immunity and progression in bladder cancer. Here we further explored the function of RP11-89, a lncRNA discovered in the previous signature. Loss- and gain-of function experiments were performed using CCK-8 assay, flow cytometry, Transwell assays, scratch tests and subcutaneous nude mouse models. High-throughput RNA sequencing was conducted to identify dysregulated genes in bladder cancer cells with RP11-89 knockdown or overexpression. Regulation of RP11-89 on miR-129-5p and PROM2 was explored through luciferase reporter assay, RIP assay and RNA pull-down assay. RP11-89 promoted cell proliferation, migration and tumorigenesis and inhibited cell cycle arrest via the miR-129-5p/PROM2 axis. We found that RP11-89 “sponges” miR-129-5p and upregulates PROM2. Elevated PROM2 in cells was associated with attenuated ferroptosis through iron export, formation of multivesicular bodies and less mitochondrial abnormalities. We demonstrated that RP11-89 is a novel tumorigenic regulator that inhibits ferroptosis via PROM2-activated iron export. RP11-89 may serve as a potential biomarker for targeted therapy in bladder cancer.


2020 ◽  
pp. jim-2020-001537
Author(s):  
Shanshan Wu ◽  
Shimei Liu ◽  
Huaihua Song ◽  
Jiayu Xia

Circular RNA (circRNA) is an endogenous RNA molecule with a stable closed-loop structure. The circular RNA HIPK3 (circHIPK3) is highly expressed in hepatocellular carcinoma and facilitates tumor growth. However, its role in cervical cancer (CC) and its regulatory mechanisms are not well-studied. This study aimed for investigating the function of circHIPK3 on proliferation and metastasis of CC cells. In this study, quantitative real-time PCR assay was adopted to delve into the circHIPK3 expression in CC cell lines. Cell counting kit-8 and colony formation assays were used to evaluate the influence of overexpression and knockdown of circHIPK3 on CC cell proliferation. Dual-luciferase reporter assay was employed to probe into the binding of miR-485-3p to circHIPK3 and miR-485-3p to the 3’ untranslated region (UTR) of fibroblast growth factor 2 (FGF2), respectively. FGF2 protein expression was detected by western blot analysis. This study confirmed that circHIPK3 was highly expressed in CC tissues. Overexpressed circHIPK3 could remarkably expedite the proliferation, migration and invasion of SiHa cells, and knocking down circHIPK3 could significantly impede the proliferation, migration and invasion of HeLa cells. MiR-485-3p can directly bind to circHIPK3 and the 3’UTR of FGF2. Overexpression of circHIPK3 triggered the upregulation of FGF2 expression while knockdown of circHIPK3 reduced FGF2 expression in CC cells, and the transfection of miR-485-3p mimics reversed the upregulation of FGF2 expression and enhanced malignant phenotypes in CC cells with overexpressed circHIPK3.


2019 ◽  
Vol 18 ◽  
pp. 153303381989259 ◽  
Author(s):  
Keqiang Liu ◽  
Weiqiang Zhang ◽  
Jian Tan ◽  
Jingbo Ma ◽  
Jing Zhao

Objective: The aim of this study was to investigate the microRNA-200b-3p expression in lung adenocarcinoma and the possible functional associations of microRNA-200b-3p with cell proliferation, migration, and invasion. Methods: Quantitative real-time polymerase chain reaction was used to detect the expression of microRNA-200b-3p in lung adenocarcinoma samples and in the human lung adenocarcinoma cell lines A549 and H1299. A549 and H1299 cells were transfected with either a microRNA-200b-3p mimic or a negative control microRNA or either an empty vector or an adenosine triphosphate-binding cassette transporter A-1 overexpression vector. A Cell Counting Kit-8 assay was employed to assess the ability of cell proliferation. Transwell assays and transwell-Matrigel invasion assay were, respectively, utilized to assess the capacity of migration and invasion in A549 and H1299 cells. Results: The results showed that microRNA-200b-3p expression was significantly upregulated in tumor tissues compared with that in adjacent normal tissues. Overexpression of microRNA-200b-3p promoted lung adenocarcinoma cell proliferation and metastasis. Furthermore, adenosine triphosphate-binding cassette transporter A-1 was a direct target of microRNA-200b-3p, and this binding was verified by luciferase reporter analysis. Overexpression of adenosine triphosphate-binding cassette transporter A-1 obviously suppressed lung adenocarcinoma cell proliferation, migration, and invasion. Lung adenocarcinoma cell phenotypes induced by microRNA-200b-3p overexpression could be partially remitted by the co-overexpression of microRNA-200b-3p and adenosine triphosphate-binding cassette transporter A-1. Conclusion: This study first identified that microRNA-200b-3p is upregulated in lung adenocarcinoma cells and associated with cell proliferation and metastasis. MicroRNA-200b-3p promoted lung adenocarcinoma cell proliferation and metastasis by suppressing adenosine triphosphate-binding cassette transporter A-1. MicroRNA-200b-3p may function as a novel molecular marker and therapeutic target for lung adenocarcinoma treatment.


2019 ◽  
Vol 52 (1) ◽  
Author(s):  
Pingyu Ge ◽  
Yinxue Guo ◽  
Jun Shen

Abstract Background IcarisideII (ICAII) could promote the differentiation of adipose tissue-derived stem cells (ADSCs) to Schwann cells (SCs), leading to improvement of erectile function (EF) and providing a realistic therapeutic option for the treatment of erectile dysfunction (ED). However, the underlying molecular mechanisms of ADSCs and ICAII in this process remain largely unclear. Methods ADSCs were treated with different concentrations of ICAII. Cell proliferation was determined by MTT assay. qRT-PCR and western blot were performed to detect expressions of SCs markers, signal transducer and activator of transcription-3 (STAT3), and microRNA-let-7i (let-7i). Luciferase reporter assay was conducted to verify the regulatory relationship between let-7i and STAT3. The detection of intracavernosal pressure (ICP) and the ratio of ICP/mean arterial pressure (MAP) were used to evaluate the EF in bilateral cavernous nerve injury (BCNI) rat models. Results ICAII promoted cell proliferation of ADSCs in a dose-dependent manner. The mRNA and protein levels of SCs markers were increased by ICAII treatment in a dose-dependent manner in ADSCs. Moreover, let-7i was significantly decreased in ICAII-treated ADSCs and upregulation of let-7i attenuated ICAII-induced promotion of SCs markers. In addition, STAT3 was a direct target of let-7i and upregulated in ICAII-treated ADSCs. Interestingly, overexpression of STAT3 abated the let-7i-mediated inhibition effect on differentiation of ADSCs to SCs and rescued the ICAII-mediated promotion effect on it. Besides, combination treatment of ADSCs and ICAII preserved the EF of BCNI rat models, which was undermined by let-7i overexpression. Conclusion ICAII was effective for preserving EF by promoting the differentiation of ADSCs to SCs via modulating let-7i/STAT3 pathway.


Sign in / Sign up

Export Citation Format

Share Document