Overview of Mechanisms of Action of Lycopene

2002 ◽  
Vol 227 (10) ◽  
pp. 920-923 ◽  
Author(s):  
David Heber ◽  
Qing-Yi Lu

Dietary intakes of tomatoes and tomato products containing lycopene have been shown to be associated with decreased risk of chronic diseases such as cancer and cardiovascular diseases in numerous studies. Serum and tissue lycopene levels have also been inversely related to the risk of lung and prostate cancers. Lycopene functions as a very potent antioxidant, and this is clearly a major important mechanism of lycopene action. In this regard, lycopene can trap singlet oxygen and reduce mutagenesis in the Ames test. However, evidence is accumulating for other mechanisms as well. Lycopene at physiological concentrations can inhibit human cancer cell growth by interfering with growth factor receptor signaling and cell cycle progression specifically in prostate cancer cells without evidence of toxic effects or apoptosis of cells. Studies using human and animal cells have identified a gene, connexin 43, whose expression is upregulated by lycopene and which allows direct intercellular gap junctional communication (GJC). GJC is deficient in many human tumors and its restoration or upregulation is associated with decreased proliferation. The combination of low concentrations of lycopene with 1, 25-dihydroxyvitamin D3 exhibits a synergistic effect on cell proliferation and differentiation and an additive effect on cell cycle progression in the HL-60 promyelocyte leukemia cell line, suggesting some interaction at a nuclear or subcellular level. The combination of lycopene and lutein synergistically interact as antioxidants, and this may relate to specific positioning of different carotenoids in membranes. This review will focus on the growing body of evidence that carotenoids have unexpected biologic effects in experimental systems, some of which may contribute to their cancer preventive properties in models of carcinogenesis. Consideration of solubility In vitro, comparison with doses achieved in humans by dietary means, interactions with other phytochemicals, and other potential mechanisms such as stimulation of xenoblotic metabolism, inhibition of cholesterogenesis, modulation of cyclooxygenase pathways, and inhibition of inflammation will be considered. This review will point out areas for future research where more evidence is needed on the effects of lycopene on the etiology of chronic disease.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2563-2563
Author(s):  
Zhenbiao Xia ◽  
Relja Popovic ◽  
Tara Lorenz ◽  
Donna Santillan ◽  
Frank Erfurth ◽  
...  

Abstract The MLL gene, involved in many chromosomal translocations associated with acute myeloid and lymphoid leukemia, has more than forty known partner genes with which it is able to form in- frame fusions. MLL fusion genes transform hematopoietic cells in vitro, and cause leukemia in mouse models. However, the mechanism is still not clear. Characterizing important downstream target genes may provide rational therapeutic strategies for the treatment of MLL-associated leukemia. We explored potential downstream target genes of the most prevalent MLL fusion protein, MLL-AF4, which is primarily associated with pro-B ALL and is involved in the majority of infant leukemia. To this end, we developed an inducible MLL-AF4 fusion cell line. Overexpression of MLL-AF4 does not lead to increased proliferation in this cell line, but rather, cell growth is slowed compared to similar cell lines inducibly expressing truncated MLL. To try to understand the reason for slower cell growth, we assayed for expression of several CDK inhibitors. We found that in the MLL-AF4 induced cell line, the amount of CDKN1B (cyclin-dependent kinase inhibitor P27) was dramatically decreased both at the RNA and protein levels, in contrast, the levels of CDKN1A (P21) and CDKN2A (P16) were unchanged. Interestingly, we did not observe an increased percentage of cells in S phase of the cell cycle. To explore whether CDKN1B might be a direct target of MLL-AF4, we employed chromatin immunoprecipitation (ChIP) assays and luciferase reporter gene assays. We observed that MLL-AF4 binds to the CDKN1B promoter in vivo and represses CDKN1B promoter activity. Further, we confirmed CDKN1B promoter binding by ChIP assays in the MLL-AF4 leukemia cell line MV4-11. Our results suggest that the CDKN1B may be a downstream target of MLL-AF4, and that MLL-AF4 inhibits CDKN1B expression independent of cell cycle progression.


1988 ◽  
Vol 6 (3) ◽  
pp. 209-220 ◽  
Author(s):  
Hiroyuki Tsuda ◽  
Mamoru Sakaguchi ◽  
Makoto Kawakita ◽  
Shimpei Nakazawa ◽  
Taijiro Mori ◽  
...  

Biomolecules ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 473
Author(s):  
Irina Epifantseva ◽  
Shaohua Xiao ◽  
Rachel E. Baum ◽  
André G. Kléber ◽  
TingTing Hong ◽  
...  

Connexin 43 (Cx43) is a gap junction protein that assembles at the cell border to form intercellular gap junction (GJ) channels which allow for cell–cell communication by facilitating the rapid transmission of ions and other small molecules between adjacent cells. Non-canonical roles of Cx43, and specifically its C-terminal domain, have been identified in the regulation of Cx43 trafficking, mitochondrial preconditioning, cell proliferation, and tumor formation, yet the mechanisms are still being explored. It was recently identified that up to six truncated isoforms of Cx43 are endogenously produced via alternative translation from internal start codons in addition to full length Cx43, all from the same mRNA produced by the gene GJA1. GJA1-11k, the 11kDa alternatively translated isoform of Cx43, does not have a known role in the formation of gap junction channels, and little is known about its function. Here, we report that over expressed GJA1-11k, unlike the other five truncated isoforms, preferentially localizes to the nucleus in HEK293FT cells and suppresses cell growth by limiting cell cycle progression from the G0/G1 phase to the S phase. Furthermore, these functions are independent of the channel-forming full-length Cx43 isoform. Understanding the apparently unique role of GJA1-11k and its generation in cell cycle regulation may uncover a new target for affecting cell growth in multiple disease models.


Oncogene ◽  
2020 ◽  
Author(s):  
Akihiro Yoshida ◽  
Jaewoo Choi ◽  
Hong Ri Jin ◽  
Yan Li ◽  
Sagar Bajpai ◽  
...  

Abstract Overexpression of D-type cyclins in human cancer frequently occurs as a result of protein stabilization, emphasizing the importance of identification of the machinery that regulates their ubiqutin-dependent degradation. Cyclin D3 is overexpressed in ~50% of Burkitt’s lymphoma correlating with a mutation of Thr-283. However, the E3 ligase that regulates phosphorylated cyclin D3 and whether a stabilized, phosphorylation deficient mutant of cyclin D3, has oncogenic activity are undefined. We describe the identification of SCF-Fbxl8 as the E3 ligase for Thr-283 phosphorylated cyclin D3. SCF-Fbxl8 poly-ubiquitylates p-Thr-283 cyclin D3 targeting it to the proteasome. Functional investigation demonstrates that Fbxl8 antagonizes cell cycle progression, hematopoietic cell proliferation, and oncogene-induced transformation through degradation of cyclin D3, which is abolished by expression of cyclin D3T283A, a non-phosphorylatable mutant. Clinically, the expression of cyclin D3 is inversely correlated with the expression of Fbxl8 in lymphomas from human patients implicating Fbxl8 functions as a tumor suppressor.


2013 ◽  
Vol 73 (22) ◽  
pp. 6667-6678 ◽  
Author(s):  
Jae-Sung Kim ◽  
Eun Ju Kim ◽  
Jeong Su Oh ◽  
In-Chul Park ◽  
Sang-Gu Hwang

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3510-3510
Author(s):  
Martin Sattler ◽  
Christoph Walz ◽  
Brian J. Crowley ◽  
Jessica L. Gramlich ◽  
Kendra L. King ◽  
...  

Abstract The V617F activating point mutation in Jak2 has recently been detected in a high proportion of patients with the myeloproliferative disorders polycythemia vera, essential thrombocythemia, and idiopathic myelofibrosis. Using the Jak2V617F-mutant erythroid leukemia cell line HEL as a model, potential mechanisms that contribute to transformation were investigated. Inhibition of Jak2V617F with a small molecule kinase inhibitor reduced cell growth of HEL cells in a dose dependent manner with an IC50 of 300 nM. This inhibition of growth was associated with a G1 cell cycle arrest, with minimal or delayed apoptosis. The major Jak2 target in normal hematopoietic cells, STAT5, was found to be activated by Jak2V617F. Treatment of the cells with either a Jak2 kinase inhibitor, or with a Jak2-targeted siRNA, decreased STAT5 activation, and also resulted in decreased expression of cyclin D2 and increased expression of p27Kip. Of interest, we found that Jak2V617F induced high levels of reactive oxygen species (ROS), an activity associated with several other tyrosine kinase oncogenes. Expression of a constitutively active form of STAT5 by itself was capable reducing expression of p27Kip and increasing production of ROS, suggesting that each of these signaling events are downstream of STAT5. Additionally, treatment of HEL cells with the anti-oxidant N-acetylcystein increased expression of p27Kip, suggesting that Jak2V617F regulates cell cycle progression at least in part through STAT5 activation of ROS, and ROS regulation of p27Kip. Cell growth of HEL cells was found to be blocked by anti-oxidants. Overall, our results suggest that constitutive activation of Jak2 contributes to a transforming phenotype and therefore hints at novel targets for drug development that may aid traditional therapy.


Sign in / Sign up

Export Citation Format

Share Document