scholarly journals Energy-aware determination of compression for low latency in solar-powered wireless sensor networks

2017 ◽  
Vol 13 (2) ◽  
pp. 155014771769416 ◽  
Author(s):  
Min Jae Kang ◽  
Semi Jeong ◽  
Ikjune Yoon ◽  
Dong Kun Noh

There have been many studies performed about increasing network lifetime in wireless sensor networks that involve reducing data size, since the data transmission process takes up a large part of energy consumption. However, reducing data size results in increased delay time due to not only the compression computation time but also the waiting time to gather a sufficient amount of data for compression. Meanwhile, in solar-powered wireless sensor networks, the harvested energy may be surplus to the basic operations of sensor nodes. In this study, such surplus energy is utilized to reduce the delay time between nodes. Nodes with residual energy less than a certain threshold transfer data with compression in order to reduce energy consumption, and nodes with residual energy over the threshold (which means there is surplus energy) transfer data without compression to reduce the delay time between nodes by using the surplus energy. Simulation-based performance verifications show that the technique proposed in this study exhibits optimal performance in terms of both energy and delay times compared with traditional methods.

Sensors ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 272 ◽  
Author(s):  
Minjae Kang ◽  
Ikjune Yoon ◽  
Dong Noh

By utilizing mobile sinks in wireless sensor networks (WSNs), WSNs can be deployed in more challenging environments that cannot connect with the Internet, such as those that are isolated or dangerous, and can also achieve a balanced energy consumption among sensors which leads to prolonging the network lifetime. However, an additional overhead is required to check the current location of the sink in order for a node to transmit data to the mobile sink, and the size of the overhead is proportional to that of the network. Meanwhile, WSNs composed of solar-powered nodes have recently been actively studied for the perpetual operation of a network. This study addresses both of these research topics simultaneously, and proposes a method to support an efficient location service for a mobile sink utilizing the surplus energy of a solar-powered WSN. In this scheme, nodes that have a sufficient energy budget can constitute rings, and the nodes belonging to these rings (which are called ring nodes) maintain up-to-date location information on the mobile sink node and serve this information to the other sensor nodes. Because each ring node only uses surplus energy to serve location information, this does not affect the performance of a node’s general operations (e.g., sensing, processing, and data delivery). Moreover, because multiple rings can exist simultaneously in the proposed scheme, the overhead for acquiring the position information of the sink can be significantly reduced, and also hardly increases even if the network size becomes larger.


Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3952 ◽  
Author(s):  
Gun Wook Gil ◽  
Minjae Kang ◽  
Younghyun Kim ◽  
Ikjune Yoon ◽  
Dong Kun Noh

In solar-powered wireless sensor networks (SP-WSNs), the best use of harvested energy is more important than minimizing energy consumption since energy can be supplied periodically. Meanwhile, as is well known, the reliability of the communication between sensor nodes is very limited due to the resource constraints of sensor nodes. In this paper, we propose an efficient forward error correction (FEC) scheme which can give solar-powered wireless sensor networks more reliable communication. First, the proposed scheme provides energy-adaptive operation for the best use of solar energy. It calculates the amount of surplus energy which can be used for extra operations and then determines the number of additional parity bits for FEC according to this amount of surplus energy. At the same time, it also provides a link quality model that is used to calculate the appropriate number of parity bits for error recovery required for the current data communication environment. Finally, by considering these two parity sizes, it is possible to determine the number of parity bits that can maximize the data reliability without affecting the blacking out of nodes. The evaluation of the performance of the approach was performed by comparing the amount of data collected at the sink node and the number of blackout nodes with other schemes.


2021 ◽  
Author(s):  
Meriem MEDDAH ◽  
Rim HADDAD ◽  
Tahar EZZEDDINE

Abstract Mobile Data Collector device (MDC) is adopted to reduce the energy consumption in Wireless Sensor Networks. This device travels the network in order to gather the collected data from sensor nodes. This paper presents a new Tree Clustering algorithm with Mobile Data Collector in Wireless Sensor Networks, which establishes the shortest travelling path passing throw a subset of Cluster Heads (CH). To select CHs, we adopt a competitive scheme, and the best sensor nodes are elected according to the number of packets forwarded between sensor nodes, the number of hops to the tree’s root, the residual energy, and the distance between the node and the closest CH. In simulation results, we adopt the balanced and unbalanced topologies and prove the efficiently of our proposed algorithm considering the network lifetime, the fairness index and the energy consumption in comparison with the existing mobile data collection algorithms.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Jin Yong ◽  
Zhou Lin ◽  
Wei Qian ◽  
Bai Ke ◽  
Wang Chen ◽  
...  

In wireless sensor networks (WSNs), due to the limited energy of sensor nodes, how to design efficient hierarchical routing algorithms to balance network resources and extend network life is an important problem to be solved. Aiming at the problems such as random selection of cluster head, redundancy of working node, and construction of cluster head transmission path, which affect network energy consumption, this paper proposes a multihop routing algorithm based on path tree (MHRA-PT) to optimize the network energy. Firstly, some nodes are those close to the base station and have large remaining energy which are selected to construct a cluster head set. Then, after clustering, each cluster is divided into different regions, and in each region, nodes with residual energy greater than the average residual energy of the cluster are selected as a working node. Finally, the cluster heads are sorted according to their distance from base station, and the next hop node is selected for each cluster head in turn until a path tree rooted at base station is formed completely, leading to data transmission from working node to base station. Simulation results show that the proposed algorithm can effectively reduce network energy consumption, balance network resources, and prolong network life cycle.


Author(s):  
Chinedu Duru ◽  
Neco Ventura ◽  
Mqhele Dlodlo

Background: Wireless Sensor Networks (WSNs) have been researched to be one of the ground-breaking technologies for the remote monitoring of pipeline infrastructure of the Oil and Gas industry. Research have also shown that the preferred deployment approach of the sensor network on pipeline structures follows a linear array of nodes, placed a distance apart from each other across the infrastructure length. The linear array topology of the sensor nodes gives rise to the name Linear Wireless Sensor Networks (LWSNs) which over the years have seen themselves being applied to pipelines for effective remote monitoring and surveillance. This paper aims to investigate the energy consumption issue associated with LWSNs deployed in cluster-based fashion along a pipeline infrastructure. Methods: Through quantitative analysis, the study attempts to approach the investigation conceptually focusing on mathematical analysis of proposed models to bring about conjectures on energy consumption performance. Results: From the derived analysis, results have shown that energy consumption is diminished to a minimum if there is a sink for every placed sensor node in the LWSN. To be precise, the analysis conceptually demonstrate that groups containing small number of nodes with a corresponding sink node is the approach to follow when pursuing a cluster-based LWSN for pipeline monitoring applications. Conclusion: From the results, it is discovered that energy consumption of a deployed LWSN can be decreased by creating groups out of the total deployed nodes with a sink servicing each group. In essence, the smaller number of nodes each group contains with a corresponding sink, the less energy consumed in total for the entire LWSN. This therefore means that a sink for every individual node will attribute to minimum energy consumption for every non-sink node. From the study, it can be concurred that energy consumption of a LWSN is inversely proportional to the number of sinks deployed and hence the number of groups created.


Author(s):  
Rekha Goyat ◽  
Mritunjay Kumar Rai ◽  
Gulshan Kumar ◽  
Hye-Jin Kim ◽  
Se-Jung Lim

Background: Wireless Sensor Networks (WSNs) is considered one of the key research area in the recent. Various applications of WSNs need geographic location of the sensor nodes. Objective: Localization in WSNs plays an important role because without knowledge of sensor nodes location the information is useless. Finding the accurate location is very crucial in Wireless Sensor Networks. The efficiency of any localization approach is decided on the basis of accuracy and localization error. In range-free localization approaches, the location of unknown nodes are computed by collecting the information such as minimum hop count, hop size information from neighbors nodes. Methods: Although various studied have been done for computing the location of nodes but still, it is an enduring research area. To mitigate the problems of existing algorithms, a range-free Improved Weighted Novel DV-Hop localization algorithm is proposed. Main motive of the proposed study is to reduced localization error with least energy consumption. Firstly, the location information of anchor nodes is broadcasted upto M hop to decrease the energy consumption. Further, a weight factor and correction factor are introduced which refine the hop size of anchor nodes. Results: The refined hop size is further utilized for localization to reduces localization error significantly. The simulation results of the proposed algorithm are compared with other existing algorithms for evaluating the effectiveness and the performance. The simulated results are evaluated in terms localization error and computational cost by considering different parameters such as node density, percentage of anchor nodes, transmission range, effect of sensing field and effect of M on localization error. Further statistical analysis is performed on simulated results to prove the validation of proposed algorithm. A paired T-test is applied on localization error and localization time. The results of T-test depicts that the proposed algorithm significantly improves the localization accuracy with least energy consumption as compared to other existing algorithms like DV-Hop, IWCDV-Hop, and IDV-Hop. Conclusion: From the simulated results, it is concluded that the proposed algorithm offers 36% accurate localization than traditional DV-Hop and 21 % than IDV-Hop and 13% than IWCDV-Hop.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Mingxin Yang ◽  
Jingsha He ◽  
Yuqiang Zhang

Due to limited resources in wireless sensor nodes, energy efficiency is considered as one of the primary constraints in the design of the topology of wireless sensor networks (WSNs). Since data that are collected by wireless sensor nodes exhibit the characteristics of temporal association, data fusion has also become a very important means of reducing network traffic as well as eliminating data redundancy as far as data transmission is concerned. Another reason for data fusion is that, in many applications, only some of the data that are collected can meet the requirements of the sink node. In this paper, we propose a method to calculate the number of cluster heads or data aggregators during data fusion based on the rate-distortion function. In our discussion, we will first establish an energy consumption model and then describe a method for calculating the number of cluster heads from the point of view of reducing energy consumption. We will also show through theoretical analysis and experimentation that the network topology design based on the rate-distortion function is indeed more energy-efficient.


2012 ◽  
Vol 490-495 ◽  
pp. 1392-1396 ◽  
Author(s):  
Chu Hang Wang

Topology control is an efficient approach which can reduce energy consumption for wireless sensor networks, and the current algorithms mostly focus on reducing the nodes’ energy consumption by power adjusting, but pay little attention to balance energy consumption of the whole network, which results in premature death of many nodes. Thus, a distributed topology control algorithm based on path-loss and residual energy (PRTC) is designed in this paper. This algorithm not only maintains the least loss links between nodes but also balances the energy consumption of the network. The simulation results show that the topology constructed by PRTC can preserve network connectivity as well as extend the lifetime of the network and provide good performance of energy consumption.


Wireless Sensor Networks (WSN) consists of a large amount of nodes connected in a self-directed manner. The most important problems in WSN are Energy, Routing, Security, etc., price of the sensor nodes and renovation of these networks is reasonable. The sensor node tools included a radio transceiver with an antenna and an energy source, usually a battery. WSN compute the environmental conditions such as temperature, sound, pollution levels, etc., WSN built the network with the help of nodes. A sensor community consists of many detection stations known as sensor nodes, every of which is small, light-weight and portable. Nodes are linked separately. Each node is linked into the sensors. In recent years WSN has grow to be an essential function in real world. The data’s are sent from end to end multiple nodes and gateways, the data’s are connected to other networks such as wireless Ethernet. MGEAR is the existing mechanism. It works with the routing and energy consumption. The principal problem of this work is choosing cluster head, and the selection is based on base station, so the manner is consumes energy. In this paper, develop the novel based hybrid protocol Low Energy Aware Gateway (LEAG). We used Zigbee techniques to reduce energy consumption and routing. Gateway is used to minimize the energy consumption and data is send to the base station. Nodes are used to transmit the data into the cluster head, it transmit the data into gateway and gateway compress and aggregate the data then sent to the base station. Simulation result shows our proposed mechanism consumes less energy, increased throughput, packet delivery ration and secure routing when compared to existing mechanism (MGEAR).


2020 ◽  
Author(s):  
Ademola Abidoye ◽  
Boniface Kabaso

Abstract Wireless sensor networks (WSNs) have been recognized as one of the most essential technologies of the 21st century. The applications of WSNs are rapidly increasing in almost every sector because they can be deployed in areas where cable and power supply are difficult to use. In the literature, different methods have been proposed to minimize energy consumption of sensor nodes so as to prolong WSNs utilization. In this article, we propose an efficient routing protocol for data transmission in WSNs; it is called Energy-Efficient Hierarchical routing protocol for wireless sensor networks based on Fog Computing (EEHFC). Fog computing is integrated into the proposed scheme due to its capability to optimize the limited power source of WSNs and its ability to scale up to the requirements of the Internet of Things applications. In addition, we propose an improved ant colony optimization (ACO) algorithm that can be used to construct optimal path for efficient data transmission for sensor nodes. The performance of the proposed scheme is evaluated in comparison with P-SEP, EDCF, and RABACO schemes. The results of the simulations show that the proposed approach can minimize sensor nodes’ energy consumption, data packet losses and extends the network lifetime


Sign in / Sign up

Export Citation Format

Share Document