scholarly journals Experimental investigation of pressure pulsation induced by the floor-attached vortex in an axial flow pump

2019 ◽  
Vol 11 (3) ◽  
pp. 168781401983870 ◽  
Author(s):  
Xijie Song ◽  
Chao Liu

The pressure pulsation test in an axial flow pump with and without the floor-attached vortex was performed. Pressure sensors were mounted on the impeller inlet section and impeller outlet section and guide vane section outlet of the axial flow pump. The investigations showed that the pressure pulsation in the axial flow pump was mainly affected by the impeller rotation. The time-domain characteristic curves of the pressure pulsation at the impeller inlet and outlet changed the most at different periods when the floor-attached vortex appeared in the pump sump. There was no significant difference between the time-domain characteristic curves of the pressure pulsation with and without the floor-attached vortex at the guide vane outlet. The pressure pulsation induced by the floor-attached vortex was a low-frequency pulsation of 2.12 Hz, which fluctuates periodically with time in the form of a trigonometric function. The pressure pulsation amplitudes with the floor-attached vortex were larger than those without the floor-attached vortex. The floor-attached vortex mainly affected the pressure pulsation in the impeller and had less influence on the pressure pulsation at the guide vane outlet due to the rectifying effect of the guide vane.

2021 ◽  
Vol 9 (12) ◽  
pp. 1429
Author(s):  
Fan Yang ◽  
Pengcheng Chang ◽  
Yao Yuan ◽  
Na Li ◽  
Rongsheng Xie ◽  
...  

Vertical axial flow pump device has the characteristics of large flow and low head, which is widely used in pumping station projects with head of 3–9 m. In order to study the influence of the timing effect of the impeller relative flow channel and guide vane on the flow field and pulsation in the axial flow pump device, the whole flow channel of the vertical axial flow pump device was taken as the research object. The reliability of the numerical simulation was verified by physical model test. The flow field characteristics and pressure pulsation characteristics of the inlet and outlet regions of the impeller, the guide vane and the campaniform inlet conduit at different timing positions of the impeller under different flow rates were analyzed. The results show that the pressure coefficient distribution of the impeller inlet of the vertical axial flow pump device presents four high-pressure areas and four low-pressure areas with the rotation of the impeller. The pressure pulsation at the inlet and outlet of the impeller is mainly affected by the rotation of the impeller, and the main frequency is 4 times the rotation frequency amplitude of pressure pulsation decreases with the increase of flow rate. When the flow rate increased from 0.8 Qbep to 1.2 Qbep, the average velocity circulation at the guide vane outlet decreased by 12%; there is an obvious negative value region of the internal regularized helicity of the guide vane. When the flow rate increases from 0.8 Qbep to 1.2 Qbep, the amplitude of the pressure pulsation coefficient at the outlet of the guide vane decreases gradually, with a decrease of 94%. When the flow rate is 1.2 Qbep, the main frequency and the secondary frequency of the pressure pulsation are both low-frequency, with obvious low-frequency pulsation characteristics. Under the small flow condition of 0.8 Qbep, the outlet flow fluctuation of seven guide vane was 18.9% on average, and the flow variation of each guide vane was large. Under the optimal flow condition of 1.0 Qbep and large flow condition of 1.2 Qbep, the outlet flow fluctuation of 7 guide vane is 4.7% and 0.56% on average, and the flow change of each guide vane is stable. The outlet flow of the guide vane is mainly concentrated in two guide vane slots of the guide vane, and the flow ratios are 30.56%, 30.14% and 29.16% under three flow conditions, respectively. The research results provide a scientific basis for the optimization design and stable operation of vertical axial flow pump device.


2021 ◽  
Vol 11 (15) ◽  
pp. 6774
Author(s):  
Fan Yang ◽  
Dongjin Jiang ◽  
Tieli Wang ◽  
Pengcheng Chang ◽  
Chao Liu ◽  
...  

The outlet conduit is an important construction connecting the outlet of the pump guide vane and the outlet pool; in order to study the hydraulic performance of the straight outlet conduit of the axial-flow pump device, this paper adopts the method of numerical simulation and analyzes the influence of the division pier on the pressure and velocity distribution inside and near the wall of the straight outlet conduit based on three design schemes. Four pressure pulsation measuring points were arranged in the straight outlet conduit, and the low-frequency pulsation characteristic information inside the straight outlet conduit with and without the division pier was extracted by wavelet packet reconstruction. The results show that the addition of a division pier has an effect on the hydraulic loss, near-wall pressure and velocity distribution in the straight outlet conduit. A small high-pressure zone is formed near the wall at the starting position of the division pier, and a large high-speed zone is formed on the left side at the starting position of the division pier. The length of the division pier has no significant effect on the flow distribution of the straight outlet conduit and the pressure and velocity distribution near the wall. Under different working conditions, each monitoring point has the maximum energy in the sub-band (0~31.25 Hz). With the increase of the flow rate, the total pressure energy of the straight outlet conduit decreases gradually. Under each condition, the difference of the energy proportion of the horizontal monitoring points of the straight outlet conduit is small, and the difference of the energy proportion of the two monitoring points at the top and bottom of the outlet channel is relatively large. The energy of the two monitoring points in the straight outlet conduit with a division pier is smaller than that of the two monitoring points in the straight outlet conduit without a division pier. There are differences in the main frequency and the power spectrum corresponding to the main frequency of the monitoring points in the straight outlet conduit, and the reasonable setting of the division pier is conducive to reducing the pressure pulsation of the flow in the straight outlet conduit and is beneficial to the safe and stable operation of the pump device.


Author(s):  
Sang-Won Kim ◽  
Youn-Jea Kim

An axial-flow pump has a relatively high discharge flow rate and specific speed at a relatively low head and it consists of an inlet guide vane, impeller, and outlet guide vane. The interaction of the flow through the inlet guide vane, impeller, and outlet guide vane of the axial-flow pump has a significant effect on its performance. Of those components, the guide vanes especially can improve the head and efficiency of the pump by transforming the kinetic energy of the rotating flow, which has a tangential velocity component, into pressure energy. Accordingly, the geometric configurations of the guide vanes such as blade thickness and angle are crucial design factors for determining the performance of the axial-flow pump. As the reliability of Computational Fluid Dynamics (CFD) has been elevated together with the advance in computer technology, numerical analysis using CFD has recently become an alternative to empirical experiment due to its high reliability to measure the flow field. Thus, in this study, 1,200mm axial-flow pump having an inlet guide vane and impeller with 4 blades and an outlet guide vane with 6 blades was numerically investigated. Numerical study was conducted using the commercial CFD code, ANSYS CFX ver. 16.1, in order to elucidate the effect of the thickness and angle of the guide vanes on the performance of 1,200mm axial-flow pump. The stage condition, which averages the fluxes between interfaces and is accordingly appropriate for the evaluation of pump performance, was adopted as the interface condition between the guide vanes and the impeller. The rotational periodicity condition was used in order to enable a simplified geometry to be used since the guide vanes feature multiple identical regions. The shear stress transport (SST) k-ω model, predicting the turbulence within the flow in good agreement, was also employed in the CFD calculation. With regard to the numerical simulation results, the characteristics of the pressure distribution were discussed in detail. The pump performance, which will determine how well an axial-flow pump will work in terms of its efficiency and head, was also discussed in detail, leading to the conclusion on the optimal blade thickness and angle for the improvement of the performance. In addition, the total pressure loss coefficient was considered in order to investigate the loss within the flow paths depending on the thickness and angle variations. The results presented in this study may give guidelines to the numerical analysis of the axial-flow pump and the investigation of the performance for further optimal design of the axial-flow pump.


Author(s):  
Youn-Sung Kim ◽  
Hyeon-Seok Shim ◽  
Kwang-Yong Kim

This study aims to evaluate effects of blade pitch and inlet guide vane (IGV) angle on the performance characteristics of a submersible axial-flow pump. According to the results of the previous study, the efficiency at the design and over-load conditions were significantly affected by the angle of IGV due to change in the incidence angle. To investigate the interactional effects of IGV and blade angle are analyzed using three-dimensional Reynolds-averaged Navier-Stokes equations with shear stress transport turbulence model. The hexahedral grids are used in the computational domain and a grid-dependency test is performed to obtain an optimal number of the grids. In this study, combinations of three different blade angles and two different IGV angles are tested. Adjusting angle of IGV increases the total pressure of the pump with a blade pitch increase, which can increase the efficiency of the pump in operating range.


2013 ◽  
Vol 52 (3) ◽  
pp. 032011
Author(s):  
W J Wang ◽  
Q H Liang ◽  
Y Wang ◽  
Y Yang ◽  
G Yin ◽  
...  

2019 ◽  
Vol 11 (11) ◽  
pp. 168781401988947
Author(s):  
Xiaohui Duan ◽  
Fangping Tang ◽  
Wenyong Duan ◽  
Wei Zhou ◽  
Lijian Shi

Pressure and vibration displacement value are relatively measured by 14 pressure sensors and 2 vibration sensors distributing inside the tank-type model axial flow pump device under different flow rates. By comparison, it is found that the pressure pulsation on the inlet of the impeller is the main cause of hydraulic induced vibration of the pump device, and it is found to have similar amplitude trend with the vertical vibration as the flow rates increases and large correlation coefficient with the horizontal vibration under high flow rates through time-domain analysis. By frequency-domain analysis, it is found that the main frequency of pressure pulsation is three multiplies of the shaft frequency, but it is one multiplies of vertical vibration, and it changes from one multiplies to three multiplies of horizontal vibration. Combining with the analysis of phase-flow rates characteristics of both pressure pulsation and vibration, it is concluded that, for the horizontal vibration, the frequency ingredient of one multiplies ranging from low to high flow rates and three multiplies removing from unstable and high flow rates zone are possibly induced by pressure pulsation on the inlet of impeller, while for the vertical vibration, the frequency ingredient of one multiplies under design flow rates and high flow rates are possibly induced by pressure pulsation on the inlet of impeller. Both the horizontal and vertical vibrations with frequency of two multiplies have little relationship with the pressure pulsation on the inlet of impeller.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Fan Yang ◽  
Hao-ru Zhao ◽  
Chao Liu

In order to investigate the influence of adjustable outlet guide vane on the hydraulic performance of axial-flow pump at part loads, the axial-flow pump with 7 different outlet guide vane adjustable angles was simulated based on the RNG k-ε turbulent model and Reynolds time-averaged equations. The Vector graphs of airfoil flow were analyzed in the different operating conditions for different adjustable angles of guide vane. BP-ANN prediction model was established about the effect of adjustable outlet guide vane on the hydraulic performance of axial-flow pump based on the numerical results. The effectiveness of prediction model was verified by theoretical analysis and numerical simulation. The results show that, with the adjustable angle of guide vane increasing along clockwise, the high efficiency area moves to the large flow rate direction; otherwise, that moves to the small flow rate direction. The internal flow field of guide vane is improved by adjusting angle, and the flow separation of tail and guide vane inlet ledge are decreased or eliminated, so that the hydraulic efficiency of pumping system will be improved. The prediction accuracy of BP-ANN model is 1%, which can meet the requirement of practical engineering.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Yuquan Zhang ◽  
Yanhe Xu ◽  
Yuan Zheng ◽  
E. Fernandez-Rodriguez ◽  
Aoran Sun ◽  
...  

A multiobjective optimization technique based on the computational fluid dynamics (CFD) simulations and the orthogonal test is proposed to reduce the pressure pulsation in this paper. Three levels of four well-known performance factors L9 (34) were considered in the orthogonal test scheme: the number of blades, the blade setting angle, the hub ratio, and the distance between the blade and the guide vane. The evaluation indexes corresponded to the head, efficiency, shaft power, and pressure pulsation, respectively. An optimal configuration A2B1C2D3 was obtained by comprehensive frequency analysis method, after intuitive and range analysis. In comparison with the nonoptimized model, the new design’s head and efficiency increased by 17.8% and 4.26%, whilst the shaft power and the pressure pulsation coefficient reduced by 1.22% and 11%, respectively. Experiments conducted on the optimized pump were consistent with the CFD model. Six different rotational speed conditions in the optimal operating points were numerically calculated in order to explore the internal hydraulic characteristics of the optimized axial flow pump. It is verified that the comprehensive frequency analysis method based on the orthogonal test approach is effective for the multiobjective optimization of the axial flow pump.


2020 ◽  
Vol 142 (7) ◽  
Author(s):  
Chaoyue Wang ◽  
Fujun Wang ◽  
Yuan Tang ◽  
Benhong Wang ◽  
Zhifeng Yao ◽  
...  

Abstract Stator corner separation flow existing in the guide-vane domain has significant effects on the characteristics of an axial-flow pump. The objective of this paper is to investigate the vortical structures in stator corner separation flow. Transient numerical simulation with a proof experiment was conducted for an axial-flow pump. Structural features of the vortices and their effects on velocity moment attenuation and pressure fluctuations in the guide-vane domain were analyzed. Horn-like vortices are found in the stator corner separation flow. A full cycle of the horn-like vortex evolution, “inception-growth-development-decay,” is presented. During this transit process, the vortex tube is gradually elongated and deformed, which forms an oblique separation line on the vane suction surface. High velocity moment always exists in the flow passages of the guide-vane domain, and the uniformity of main flows is gradually reduced. Meanwhile, periodic pressure fluctuations arise. The maximum amplitude of pressure fluctuations in the flow passages occurs in the region where the horn-like vortex cores at the “growth” stage lie in, which is approximately 3.39 times higher than that in the vaneless region between the impeller and guide-vane. The dominant frequency of pressure fluctuations in the flow passages is approximately 0.75 times the rotating frequency, which is close to the frequency of the full cycle of the horn-like vortex evolution. Horn-like vortices have remarkable effects on the flow fields, and more attention should be paid to them.


Sign in / Sign up

Export Citation Format

Share Document