scholarly journals Influence of sensitive pose errors on tooth deviation of cylindrical gear in power skiving

2019 ◽  
Vol 11 (4) ◽  
pp. 168781401984375 ◽  
Author(s):  
Erkuo Guo ◽  
Naifei Ren ◽  
Zhulin Liu ◽  
Xintao Zheng
2015 ◽  
Vol 799-800 ◽  
pp. 382-387 ◽  
Author(s):  
Er Kuo Guo ◽  
Rong Jing Hong ◽  
Xiao Diao Huang ◽  
Cheng Gang Fang

Latest research clearly demonstrates the excellent capability of the gear power skiving technology. For further improvement of the skiving process and enhancement of the process reliability the fundamental research on the cutting mechanism of cylindrical gear power skiving was conducted. First the kinematic model of power skiving and mathematical equations of cutter were established according to the engagement principle of crossed helical gears. Then, based on the proposed model, we investigated the simulation process, chip deformation mechanism and the cutter top relief angle. The results support the skiving cutter design and process optimization and are an important basis for the implementation of the advanced gear process.


2015 ◽  
Vol 79 (1-4) ◽  
pp. 541-550 ◽  
Author(s):  
Erkuo Guo ◽  
Rongjing Hong ◽  
Xiaodiao Huang ◽  
Chenggang Fang

2014 ◽  
Vol 532 ◽  
pp. 249-252
Author(s):  
Ying Hua Liao ◽  
Gao Jun Liu ◽  
Xiang Guo Sun

An intelligent CAD system for Involute cylindrical gear cutting tools is developed by VC++ and SQL server, and it includes four modules, such as user interface, instance query, intelligent gear tool design and database. The intelligent gear tool design is the key to the intelligent CAD system, and it is based on the forward reasoning production system, and as the Intelligent reasoning technology is used for gear tool design, a lots of expert knowledge could be made full use of. The design results by the developed intelligent CAD system are more reasonable than those by a traditional CAD system, and the efficiency and quality of the gear tool design also could be improved. The developed intelligent CAD system supports both 2D and 3D models, which can lay foundation for CAD/CAE/CAM integration of gear cutting tools.


2021 ◽  
Vol 53 (3) ◽  
Author(s):  
Ghada Yassin Abdel-Latif ◽  
Mohamed Farhat O. Hameed ◽  
S. S. A. Obayya
Keyword(s):  

2013 ◽  
Vol 579-580 ◽  
pp. 300-304 ◽  
Author(s):  
Lian Xia ◽  
Da Zhu Li ◽  
Jiang Han

Elliptic family gears are commonly used in non-circular gears, which include elliptic gear, high-order gear, elliptic deformed gear and high-order deformed gear, thereinto high-order deformed gear can include the elliptic family gears through adjust its order and deformed coefficient. Because non-circular gear has different tooth profile in different position of pitch curve and there is difference in the left and right tooth profile of the same gear tooth, thus the CAD modeling of non-circular gear is difficult for these characteristics; but the precise model of non-circular gear has important significance to the realization of numerical control machining, kinematic simulation and relevant mechanical analysis. This paper deduce the corresponding pure rolling mathematical model based on the pure rolling contact theory that cylindrical gear and non-circular gear mesh in the end face, and realize the CAD modeling of non-circular straight and helical gears by letting the cylindrical gear and non-circular gear make solid geometry operation, which is suitable for pitch curve with convex and concave. The non-circular gear shaping methods with equal polar and equal arc length are simulated by setting different discrete polar angles, and the transmission ratio curve and the angular acceleration curve of driven gear are get through the kinematic simulation of gear pair, which realize the transmission performance analysis of elliptic family gear pair. The above research results can be applied to the modeling and kinematic performance analysis of other non-circular gears.


2021 ◽  
Vol 111 (11-12) ◽  
pp. 786-791
Author(s):  
Florian Sauer ◽  
Michael Gerstenmeyer ◽  
Volker Schulze

Innenverzahnungen, die aufgrund der Elektromobilität zunehmend im Fokus stehen, lassen sich mithilfe des Wälzschälens produktiv herstellen. Um diese Produktivität weiter zu steigern, müssen die wirkenden Verschleißmechanismen untersucht und verstanden werden. Der Beitrag behandelt die experimentelle Temperaturuntersuchung des Wälzschälens mit anschließender Modellierung der Wärmeverteilung, welche als erster Schritt zum Mechanismenverständnis angesehen werden kann.   Internal gears, which are increasingly in focus due to electromobility, can be manufactured productively with the help of power skiving. In order to further increase the productivity, the wear mechanisms have to be investigated and understood. This paper discusses the experimental temperature analysis of power skiving by subsequently modelling the heat distribution. This process can be seen as a first step towards understanding the underlying mechanisms.


Author(s):  
Chao Lin ◽  
Yanqun Wei ◽  
Zhiqin Cai

The compound transmission mechanism of curve-face gear is a new type of gear transmission based on the cam mechanism and the curve-face gear pair. It combines the transmission characteristics of the cam mechanism and noncircular bevel gear. When the compound transmission mechanism of curve-face gear is engaged in the meshing transmission, the rotating center of the cylindrical gear is fixed and used as the driving wheel, and the curve-face gear can generate the helical motion around the axis. In this paper, the meshing characteristics and motion laws of the compound transmission mechanism of the curve-face gear are studied based on the theory of screw. Based on the meshing theory of gears, the coordinate system of conjugate surfaces is established, the basic meshing theory and equation are obtained. On this basis, combined with the principle of the cam, the transmission principle is analyzed by the screw theory. The tooth surface equation of the compound transmission mechanism of curve-face gear is deduced based on the meshing theory and the related knowledge of geometry. The motion law of the curve-face gear and the change of the motion law with the change of the basic parameters of the gear pair with different design parameters are calculated and analyzed. An experimental platform is built to verify the law of motion, and the experimental results are compared with the theoretical values. The correctness of the theoretical analysis is verified, which provides a new way for the research of the compound transmission mechanism of the curve-face gear.


Mechanik ◽  
2018 ◽  
Vol 91 (8-9) ◽  
pp. 737-740 ◽  
Author(s):  
Piotr Zyzak ◽  
Paweł Kobiela ◽  
Arnold Brożek ◽  
Marek Gabryś

In the paper are presented investigation results of an effects of adopted strategy of profile-dividing grinding of a cylindrical gear teeth, performed on the Rapid Höfler 900 grinder, on machining accuracy and surface roughness of the teeth. The strategies have taken into considerations changes in the following parameters determining obtained results of the grinding: number of passes, number of leads, shaping method of the grinding wheel.


Sign in / Sign up

Export Citation Format

Share Document