scholarly journals High-precision prescribed-time path following for quadrotor

2020 ◽  
Vol 17 (2) ◽  
pp. 172988142092005
Author(s):  
Yibo Ding ◽  
Xiaogang Wang ◽  
Yuliang Bai ◽  
Naigang Cui

A high-precision prescribed-time guidance law is developed for a quadrotor to accomplish precise path following at predesigned time T. Firstly, a new control structure is proposed for a quadrotor to perform fixed-velocity back-to-turn flying mode by introducing four controllers, which can realize a non-sideslip and bank-to-turn flight scheme just like a fixed-wing unmanned aerial vehicle. Then, prescribed-time guidance law is presented based on fixed-velocity back-to-turn flying mode via combining sliding mode control with a compensation function [Formula: see text] to improve tracking precision of conventional methods. Compensation function [Formula: see text] is designed to make state error achieve convergence at prescribed time exactly. Meanwhile, global sliding mode is established to enhance robustness of the system. Then, the stability and characteristic of prescribed-time convergence are proved strictly. Finally, simulations with a 6-degree-of-freedom quadrotor model are carried out to demonstrate the effectiveness and superiority of prescribed-time guidance law by comparing with traditional guidance law.

2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Yang Chen ◽  
Jianhong Liang ◽  
Chaolei Wang ◽  
Yicheng Zhang ◽  
Tianmiao Wang ◽  
...  

A guidance law has been designed to guide the small unmanned aerial vehicle towards the predefined horizontal smooth path. The guidance law only needs the mathematical expression for the predefined path, the positions, and the velocities of the vehicle in the horizontal inertial frame. The stability of the guidance law has been demonstrated by the Lyapunov stability arguments. In order to improve the path following performance, one of the parameters of the guidance law is tuned by using the fuzzy logic which will still keep its stability. The simulation experiments in the Matlab/Simulink environment to realize the square-, circular-, and the athletics track-style paths following are given to verify the effectiveness of the proposed method. The simulation results show that the path following performance will be improved with smaller overshoot and oscillation amplitude and shorter arrival time with the parameter tuned.


Author(s):  
Chuanjian Lin ◽  
Jingping Shi ◽  
Yongxi Lyu ◽  
Yueping Wang

Target tracking of ground targets is a significant application of unmanned aerial vehicles (UAVs) in civil and military fields. There are two common modes for target tracking: over-flight tracking and standoff tracking. Each tracking method has a wide application prospect. However, many researchers have studied these two tracking methods separately and designed different guidance laws, which is not conducive to practical application. In this paper, a new guidance law based on sliding mode guidance (SMG) is proposed for tracking a stationary target, which is compatible with the two tracking modes. The stability and finite-time convergence of the guidance law are proved. Then, the guidance is extended to tracking a moving target. The numerical simulations are carried out for the tracking problems of ground targets, and the results verify the effectiveness of the proposed guidance law.


Author(s):  
Shaoming He ◽  
Jiang Wang ◽  
Defu Lin

This paper investigates the problem of robust guidance law design for multiple unmanned aerial vehicles to achieve desired formation pattern for standoff tracking of an unknown ground moving target. The proposed guidance law consists of two main parts: relative range regulation and space angle control. For the first mission, a novel control law is proposed to regulate the relative distance between the unmanned aerial vehicle and the ground moving target to zero asymptotically based on adaptive sliding mode control approach. Considering the discontinuous property of the sign function, which is often used in traditional sliding mode control and will result in high-frequency chattering in the control channel, the proposed controller adopts the continuous saturation function for chattering elimination. Besides the continuous property, convergence to the origin asymptotically can be guaranteed theoretically with the proposed controller, which is quite different from traditional boundary layer technique, where only bounded motion around the sliding manifold can be ensured. For asymptotic stability, it is only required that the lumped uncertainty is bounded, but the upper bound may be unknown by virtue of the designed adaptive methodology. For space angle control, a new multiple leader–follower information architecture is introduced and an acceleration command is then derived for each unmanned aerial vehicle to space them about the loiter circle defined by the first controller. Simulation results with different conditions clearly demonstrate the superiority of the proposed formulation.


The navigation systems as part of the navigation complex of a high-precision unmanned aerial vehicle in conditions of different altitude flight are investigated. The working contours of the navigation complex with correction algorithms for an unmanned aerial vehicle during high-altitude and low-altitude flights are formed. Mathematical models of inertial navigation system errors used in non-linear and linear Kalman filters are presented. The results of mathematical modeling demonstrate the effectiveness of the working contours effectiveness of the navigation complex with correction algorithms. Keywords high-precision unmanned aerial vehicle; navigation complex; multi-altitude flight; work circuit; passive noises; Kalman filter; correction


Actuators ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 54
Author(s):  
Minh-Thien Tran ◽  
Dong-Hun Lee ◽  
Soumayya Chakir ◽  
Young-Bok Kim

This article proposes a novel adaptive super-twisting sliding mode control scheme with a time-delay estimation technique (ASTSMC-TDE) to control the yaw angle of a single ducted-fan unmanned aerial vehicle system. Such systems are highly nonlinear; hence, the proposed control scheme is a combination of several control schemes; super-twisting sliding mode, TDE technique to estimate the nonlinear factors of the system, and an adaptive sliding mode. The tracking error of the ASTSMC-TDE is guaranteed to be uniformly ultimately bounded using Lyapunov stability theory. Moreover, to enhance the versatility and the practical feasibility of the proposed control scheme, a comparison study between the proposed controller and a proportional-integral-derivative controller (PID) is conducted. The comparison is achieved through two different scenarios: a normal mode and an abnormal mode. Simulation and experimental tests are carried out to provide an in-depth investigation of the performance of the proposed ASTSMC-TDE control system.


Sensors ◽  
2019 ◽  
Vol 19 (3) ◽  
pp. 643 ◽  
Author(s):  
Juan Tan ◽  
Yonghua Fan ◽  
Pengpeng Yan ◽  
Chun Wang ◽  
Hao Feng

The unmanned aerial vehicle (UAV) has been developing rapidly recently, and the safety and the reliability of the UAV are significant to the mission execution and the life of UAV. Sensor and actuator failures of a UAV are one of the most common malfunctions, threating the safety and life of the UAV. Fault-tolerant control technology is an effective method to improve the reliability and safety of UAV, which also contributes to vehicle health management (VHM). This paper deals with the sliding mode fault-tolerant control of the UAV, considering the failures of sensor and actuator. Firstly, a terminal sliding surface is designed to ensure the state of the system on the sliding mode surface throughout the control process based on the simplified coupling dynamic model. Then, the sliding mode control (SMC) method combined with the RBF neural network algorithm is used to design the parameters of the sliding mode controller, and with this, the efficiency of the design process is improved and system chattering is minimized. Finally, the Simulink simulations are carried out using a fault tolerance controller under the conditions where accelerometer sensor, gyroscope sensor or actuator failures is assumed. The results show that the proposed control strategy is quite an effective method for the control of UAVs with accelerometer sensor, gyroscope sensor or actuator failures.


Author(s):  
Fei Ma ◽  
Yunjie Wu ◽  
Siqi Wang ◽  
Xiaofei Yang ◽  
Yueyang Hua

This paper presents an adaptive fixed-time guidance law for the three-dimensional interception guidance problem with impact angle constraints and control input saturation against a maneuvering target. First, a coupled guidance model formulated by the relative motion equation is established. On this basis, a fixed-time disturbance observer is employed to estimate the lumped disturbances. With the help of this estimation technique, the adaptive fixed-time sliding mode guidance law is designed to accomplish accurate interception. The stability of the closed-loop guidance system is proven by the Lyapunov method. Simulation results of different scenarios are executed to validate the effectiveness and superiority of the proposed guidance law.


2018 ◽  
Vol 7 (2.3) ◽  
pp. 18
Author(s):  
Mishell D. Lawas ◽  
Sherwin A. Guirnaldo

The stability of an Unmanned Aerial Vehicle (UAV) during actual flight conditions is one parameter that is very important in systems design in Avionics. In this research, two sensors, the autopilot microcontroller and the smartphone gyroscope sensing mechanism, are fused together and calibrated to monitor the flying behavior of the UAV prior to actual test flights. The two fused sensors and installed inside the UAV for relatively increased sensing accuracy and best flight monitoring capabilities. A Kalman filter is used as fusion technique and a Stewart Motion tracker is also used to test the ruggedness and accuracy of the fused sensor system. Experiment results show that fused system can give an overall mean square error or 1.9729.


Sign in / Sign up

Export Citation Format

Share Document