scholarly journals Differential induction of innate memory in porcine monocytes by β-glucan or bacillus Calmette-Guerin

2020 ◽  
pp. 175342592095160
Author(s):  
Kristen A Byrne ◽  
Christopher K Tuggle ◽  
Crystal L Loving

Innate immunomodulation via induction of innate memory is one mechanism to alter the host’s innate immune response to reduce or prevent disease. Microbial products modulate innate responses with immediate and lasting effects. Innate memory is characterized by enhanced (training) or depressed (tolerance) innate immune responses, including pro-inflammatory cytokine production, to secondary exposure following a priming event. To investigate the ability of β-glucans and bacillus Calmette-Guerin to induce innate training or tolerance in pig cells, porcine monocytes were cultured with priming agonist (β-glucans or bacillus Calmette-Guerin) then re-stimulated 5 d later with a heterologous microbial agonist to determine induction of innate memory. Priming with β-glucan from Saccharomyces cerevisiae depressed IL-1β and TNF-α cytokine responses to re-stimulation with LPS, indicative of a tolerized state. However, bacillus Calmette-Guerin priming induced a trained state in porcine monocytes, as LPS re-stimulation enhanced IL-1β and TNF-α gene expression and protein production. We present the first evidence of innate memory in pig monocytes, with bacillus Calmette-Guerin (training) or Saccharomyces cerevisiae β-glucan (tolerance). Induction of a trained or tolerized state in vitro is a first step to identify agonists to alter the innate immune system at the animal level with the intent of enhancing disease resistance.

2020 ◽  
Vol 16 (4) ◽  
pp. 293-301
Author(s):  
A. Kaki ◽  
M. Nikbakht ◽  
A.H. Habibi ◽  
H.F. Moghadam

Neuronal inflammation is one of the pathophysiological causes of diabetes neuropathic pain. The purpose of this research was to determine the effect of aerobic exercise on innate immune responses and inflammatory mediators in the spinal dorsal horn in rats with diabetic neuropathic pain. 40 eight-week-old male Wistar rats (weight range 220±10.2 g) were randomly divided into four groups of (1) sedentary diabetic neuropathy (SDN), (2) training diabetic neuropathy (TDN), (3) training control (TC), and (4) sedentary control (SC). Diabetes was induced by injection of streptozocin (50 mg/kg). Following confirmation of behavioural tests for diabetes neuropathy, the training groups performed 6 weeks of moderate-intensity aerobic exercise on the treadmill. The expression of Toll like receptor (TLR)4, TLR2, tumour necrosis factor (TNF)-α, interleukin (IL)-1β and IL-10 genes in L4-L6 spinal cord sensory neurons was measured by Real Time PCR. Two-way ANOVA and Bonferroni’s post hoc tests were used for statistical analysis. After performing aerobic exercise protocol, the TDN compared to the SDN showed a significant decrease in the mean score of pain in the formalin test and a significant increase in the latency in Tail-Flick test was observed. The expression of TLR4, TLR2, TNF-α and IL-1β genes was significantly higher in the SDN than in the SC group (P<0.05). The expression of the above genes in the TDN was significantly lower than the SDN group (P<0.05). Also, the expression level of IL-10 gene was significantly higher in the TDN than the SDN group (P<0.05). Aerobic exercise improved sensitivity of nociceptors to pain-inducing agents in diabetic neuropathy due to inhibition of inflammatory receptors and increased levels of anti-inflammatory agents in the nervous system. Thus, aerobic exercise should be used as a non-pharmacological intervention for diabetic patients to reduce neuropathic pain.


Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7461
Author(s):  
Claire K. Holley ◽  
Edward Cedrone ◽  
Duncan Donohue ◽  
Barry W. Neun ◽  
Daniela Verthelyi ◽  
...  

Understanding, predicting, and minimizing the immunogenicity of peptide-based therapeutics are of paramount importance for ensuring the safety and efficacy of these products. The so-called anti-drug antibodies (ADA) may have various clinical consequences, including but not limited to the alteration in the product’s distribution, biological activity, and clearance profiles. The immunogenicity of biotherapeutics can be influenced by immunostimulation triggered by the presence of innate immune response modulating impurities (IIRMIs) inadvertently introduced during the manufacturing process. Herein, we evaluate the applicability of several in vitro assays (i.e., complement activation, leukocyte proliferation, and cytokine secretion) for the screening of innate immune responses induced by ten common IIRMIs (Bacillus subtilis flagellin, FSL-1, zymosan, ODN2006, poly(I:C) HMW, poly(I:C) LMW, CLO75, MDP, ODN2216, and Escherichia coli O111:B4 LPS), and a model biotherapeutic Forteo™ (teriparatide). Our study identifies cytokine secretion from healthy human donor peripheral blood mononuclear cells (PBMC) as a sensitive method for the in vitro monitoring of innate immune responses to individual IIRMIs and teriparatide (TP). We identify signature cytokines, evaluate both broad and narrow multiplex cytokine panels, and discuss how the assay logistics influence the performance of this in vitro assay.


2020 ◽  
Vol 11 ◽  
Author(s):  
Imran Ahmad ◽  
Araceli Valverde ◽  
Raza Ali Naqvi ◽  
Afsar R. Naqvi

Macrophages (Mφ) are immune cells that exhibit remarkable functional plasticity. Identification of novel endogenous factors that can regulate plasticity and innate immune functions of Mφ will unravel new strategies to curb immune-related diseases. Long non-coding RNAs (lncRNAs) are a class of endogenous, non-protein coding, regulatory RNAs that are increasingly being associated with various cellular functions and diseases. Despite their ubiquity and abundance, lncRNA-mediated epigenetic regulation of Mφ polarization and innate immune functions is poorly studied. This study elucidates the regulatory role of lncRNAs in monocyte to Mφ differentiation, M1/M2 dichotomy and innate immune responses. Expression profiling of eighty-eight lncRNAs in monocytes and in vitro differentiated M2 Mφ identified seventeen differentially expressed lncRNAs. Based on fold-change and significance, we selected four differentially expressed lncRNAs viz., RN7SK, GAS5, IPW, and ZFAS1 to evaluate their functional impact. LncRNA knockdown was performed on day 3 M2 Mφ and the impact on polarization was assessed on day 7 by surface marker analysis. Knockdown of RN7SK and GAS5 showed downregulation of M2 surface markers (CD163, CD206, or Dectin) and concomitant increase in M1 markers (MHC II or CD23). RN7SK or GAS5 knockdown showed no significant impact on CD163, CD206, or CD23 transcripts. M1/M2 markers were not impacted by IPW or ZFAS1 knockdown. Functional regulation of antigen uptake/processing and phagocytosis, two central innate immune pathways, by candidate lncRNA was assessed in M1/M2 Mφ. Compared to scramble, enhanced antigen uptake and processing were observed in both M1/M2 Mφ transfected with siRNA targeting GAS5 and RN7SK but not IPW and ZFAS1. In addition, knockdown of RN7SK significantly augmented uptake of labelled E. coli in vitro by M1/M2 Mφ, while no significant difference was in GAS5 silencing cells. Together, our results highlight the instrumental role of lncRNA (RN7SK and GAS5)-mediated epigenetic regulation of macrophage differentiation, polarization, and innate immune functions.


2009 ◽  
Vol 77 (5) ◽  
pp. 1790-1797 ◽  
Author(s):  
Michael P. Nelson ◽  
Allison E. Metz ◽  
Shaoguang Li ◽  
Clifford A. Lowell ◽  
Chad Steele

ABSTRACT Src family tyrosine kinases (SFKs) phosphorylate immunotyrosine activation motifs in the cytoplasmic tail of multiple immunoreceptors, leading to the initiation of cellular effector functions, such as phagocytosis, reactive oxygen species production, and cytokine production. SFKs also play important roles in regulating these responses through the activation of immunotyrosine inhibitory motif-containing inhibitory receptors. As myeloid cells preferentially express the SFKs Hck, Fgr, and Lyn, we questioned the role of these kinases in innate immune responses to Pneumocystis murina. Increased phosphorylation of Hck was readily detectable in alveolar macrophages after stimulation with P. murina. We further observed decreased phosphorylation of Lyn on its C-terminal inhibitory tyrosine in P. murina-stimulated alveolar macrophages, indicating that SFKs were activated in alveolar macrophages in response to P. murina. Mice deficient in Hck, Fgr, and Lyn exhibited augmented clearance 3 and 7 days after intratracheal administration of P. murina, which correlated with elevated levels of interleukin 1β (IL-1β), IL-6, CXCL1/KC, CCL2/monocyte chemoattractant protein 1, and granulocyte colony-stimulating factor in lung homogenates and a dramatic increase in macrophage and neutrophil recruitment. Augmented P. murina clearance was also observed in Lyn−/− mice 3 days postchallenge, although the level was less than that observed in Hck−/− Fgr−/− Lyn−/− mice. A correlate to augmented clearance of P. murina in Hck−/− Fgr−/− Lyn−/− mice was a greater ability of alveolar macrophages from these mice to kill P. murina in vitro, suggesting that SFKs regulate the alveolar macrophage effector function against P. murina. Mice deficient in paired immunoglobulin receptor B (PIR-B), an inhibitory receptor activated by SFKs, did not exhibit enhanced inflammatory responsiveness to or clearance of P. murina. Our results suggest that SFKs regulate innate lung responses to P. murina in a PIR-B-independent manner.


2020 ◽  
Vol 21 (6-8) ◽  
pp. 409-419
Author(s):  
Irfan Hussain ◽  
Nashaiman Pervaiz ◽  
Abbas Khan ◽  
Shoaib Saleem ◽  
Huma Shireen ◽  
...  

AbstractThe outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is spreading fast worldwide. There is a pressing need to understand how the virus counteracts host innate immune responses. Deleterious clinical manifestations of coronaviruses have been associated with virus-induced direct dysregulation of innate immune responses occurring via viral macrodomains located within nonstructural protein-3 (Nsp3). However, no substantial information is available concerning the relationship of macrodomains to the unusually high pathogenicity of SARS-CoV-2. Here, we show that structural evolution of macrodomains may impart a critical role to the unique pathogenicity of SARS-CoV-2. Using sequence, structural, and phylogenetic analysis, we identify a specific set of historical substitutions that recapitulate the evolution of the macrodomains that counteract host immune response. These evolutionary substitutions may alter and reposition the secondary structural elements to create new intra-protein contacts and, thereby, may enhance the ability of SARS-CoV-2 to inhibit host immunity. Further, we find that the unusual virulence of this virus is potentially the consequence of Darwinian selection‐driven epistasis in protein evolution. Our findings warrant further characterization of macrodomain-specific evolutionary substitutions in in vitro and in vivo models to determine their inhibitory effects on the host immune system.


2020 ◽  
Vol 11 ◽  
Author(s):  
Gaël Auray ◽  
Stephanie C. Talker ◽  
Irene Keller ◽  
Sylvie Python ◽  
Markus Gerber ◽  
...  

2010 ◽  
Vol 138 (5) ◽  
pp. S-36
Author(s):  
Yvonne Junker ◽  
Donatella Barisani ◽  
Daniel A. Leffler ◽  
Towia Libermann ◽  
Simon T. Dillon ◽  
...  

Endocrinology ◽  
2011 ◽  
Vol 152 (7) ◽  
pp. 2827-2836 ◽  
Author(s):  
Tao Shang ◽  
Xiaoyan Zhang ◽  
Tao Wang ◽  
Bing Sun ◽  
Tingting Deng ◽  
...  

The testis is an immunoprivileged site, where the local cell-initiated testicular innate immune responses play a crucial role in defense against microbial infections. Mechanisms modulating the testicular cell-built defense system remain to be clarified. In this article, we demonstrate that Leydig cells, a major cell population in the testicular interstitium, initiate innate immunity through the activation of Toll-like receptors (TLRs). Several TLRs are expressed in mouse Leydig cells; among these, TLR3 and TLR4 are expressed at relatively high levels compared with other TLR members. Both TLR3 and TLR4 can be activated by their agonists (polyinosinic:polycytidylic acid and lipopolysaccharide) in Leydig cells and subsequently induce the production of inflammatory factors, such as IL-1β, IL-6, TNF-α, and type 1 interferons (IFN) (IFN-α and IFN-β). Notably, the activation of TLR3 and TLR4 suppresses steroidogenesis by Leydig cells. Further, we provide evidence that Axl and Mer receptor tyrosine kinases are expressed in Leydig cells and regulate TLR-mediated innate immune responses negatively. Data presented here describe a novel function of Leydig cells in eliciting testicular innate immune responses that should contribute to the protection of the testis from microbial infections.


Sign in / Sign up

Export Citation Format

Share Document