A multidisciplinary approach to the engineering of footwear cushioning: A practical example of gym training shoes

Author(s):  
Cédric YM Morio ◽  
Laura Bouten ◽  
Simon Duraffourg ◽  
Nicolas Delattre

According to sports goers, one of the most important features of gym training shoes is their cushioning properties. The optimal amount of cushioning is, however, complex to define. In the present paper, a multi-disciplinary approach was proposed to investigate and determine the optimal perceived midsole cushioning for gym training shoes. Firstly, impact tests were performed to characterise a wide range of shoes representing the gym training shoe market. Trained sensory panel method and mechanical testing were combined to determine the relationship between the perception of cushioning and the shoe’s mechanical properties. Secondly, the preferred cushioning perception was assessed. Then, numerous midsole configurations were tested using finite element method (FEM) to determine the combinations with the best cushioning properties in order to reduce the number of physical prototypes. To assess the best configuration estimated by the numerical model, a wear test was performed as a final validation. From this approach, relationship between the mechanical properties of the midsole and perception of cushioning was found, and an optimal perceived cushioning was identified. Moreover, through FEM numerical simulations, a great number of midsole configurations and designs were tested without making any actual prototypes. Prototype shoes were based on the best numerical solution. The final wear test confirmed that the prototype gym training shoes achieved the preferred perception of cushioning. The present methodology proposes a framework, which empowers the use of athlete’s and exerciser’s perception in shoe design.

2007 ◽  
Vol 348-349 ◽  
pp. 433-436 ◽  
Author(s):  
Han Seung Lee ◽  
Je Woon Kyung ◽  
Sung Bok Lee

This study was carried out to investigate quantitatively the relationship between the degree of reinforcement corrosion and the mechanical properties of reinforcement. In the experiment, the tensile test of corroded reinforcement was conducted at the different stage of the degree of reinforcement corrosion. As a result, it was found that the chloride-induced corrosion induce the pitting and the corrosion using electrical current induce the uniform corrosion. As the degree of reinforcement corrosion increased, the nominal yield point and nominal elastic modulus both decreased. Also, there were very high correlations between the degree of reinforcement corrosion and the mechanical properties of reinforcement. We could make the material constitutive laws for the mechanical properties of reinforcement as a function of the degree of reinforcement corrosion to analyze the damaged RC members with reinforcement corrosion using finite element method.


2016 ◽  
Vol 139 (1) ◽  
Author(s):  
H. Al-Gahtani ◽  
A. Khathlan ◽  
M. Sunar ◽  
M. Naffa'a

The juncture of a small cylindrical nozzle to a large cylindrical vessel is very common in the pressure vessel industry. Upon fabrication, it is required that the whole structure is subjected to pressure testing. The test can be expensive as it necessitates pressurizing the whole structure typically having a large volume. Hence, it is proposed to make a “local test,” which is considerably simpler as it involves capping the small nozzle and testing only a relatively small portion of the structure. This paper investigates the accuracy and reliability of such an alternative test, using the finite-element method. Two different finite-element types are used in the study, specifically a shell-based element and a solid-based element. The verification of the finite-element results for two different cases shows that the models used in the study are valid. It also proves that the two element types yield very similar stress results. In addition, the study includes a numerical investigation of more than 40 different nozzle-to-vessel junctures with a wide range of parameters for the nozzle and vessel. The results indicate that the use of cylindrical caps that are slightly larger than the nozzle is not recommended as it produces stresses that are significantly different from those for the original required pressure test. As such, the study provides an estimate of the smallest size of the cap that may be used in the local test to generate stresses that agree with the full test. For most practical geometries, it is shown that the size of the cap needs to be at least 2–30 times larger than that of the nozzle, depending on the geometrical parameters of the juncture.


2018 ◽  
Vol 934 ◽  
pp. 24-29
Author(s):  
Prapasiri Pongprayoon ◽  
Attaphon Chaimanatsakun

Graphene nanopore has been widely employed in nanofilter or nanopore devices due to its outstanding properties. The understanding of its mechanical properties at nanoscale is crucial for device improvement. In this work, the mechanical properties of graphene nanopore is thus investigated using atomistic finite element method (AFEM). Four graphene models with different pore shapes (circular (CR), horizontal rectangle (RH), and vertical rectangle (RV)) in sub-nm size which could be successfully fabricated experimentally have been studied here. The force normal to a pore surface is applied to mimic the impact force due to a fluid flow. Increasing pore size results in the reduction in its strength. Comparing among different pore shapes with comparable sizes, the order of pore strength is CR>RH>RV>SQ. In addition, we observe that the direction of pore alignment and geometries of pore edge also play a key role in mechanical strength of nanopores.


Author(s):  
Shan Jin ◽  
Shuai Yuan ◽  
Yong Bai

In practical application, pipelines will inevitably experience bending and compression during manufacture, transportation and offshore installation. The mechanical behavior of tubes under combined axial compression and bending loads is investigated using experiments and finite element method in this paper. Tubes with D/t ratios in the range of 40 and 97 are adopted in the experiments. Then, the ultimate loads and the local buckling modes of tubes are studied. The commercial software ABAQUS is used to build FE models to simulate the load-shortening responses of tubes under combined loads. The results acquired from the ABAQUS simulation are compared with the ones from verification bending experiment, which are in good agreement with each other. The models in this paper are feasible to analyze the mechanical properties of tubes under combined axial compression and bending loads. The related results may be of interest to the manufacture engineers.


2017 ◽  
Vol 09 (05) ◽  
pp. 1750076 ◽  
Author(s):  
Şeref Doğuşcan Akbaş

The purpose of this study is to investigate the thermal effects on the free vibration of functionally graded (FG) porous deep beams. Mechanical properties of the FG deep beam are temperature-dependent and vary across the height direction with different porosity models. The governing equations problem is obtained by using the Hamilton’s principle. In the solution of the problem, plane piecewise solid continua model and finite element method are used. The effects of porosity parameters, material distribution, porosity models and temperature rising on the vibration characteristics are presented and discussed with porosity effects for FG deep beams.


2022 ◽  
Vol 12 (2) ◽  
pp. 575
Author(s):  
Guangying Liu ◽  
Ran Guo ◽  
Kuiyu Zhao ◽  
Runjie Wang

The existence of pores is a very common feature of nature and of human life, but the existence of pores will alter the mechanical properties of the material. Therefore, it is very important to study the impact of different influencing factors on the mechanical properties of porous materials and to use the law of change in mechanical properties of porous materials for our daily lives. The SBFEM (scaled boundary finite element method) method is used in this paper to calculate a large number of random models of porous materials derived from Matlab code. Multiple influencing factors can be present in these random models. Based on the Monte Carlo simulation, after a large number of model calculations were carried out, the results of the calculations were analyzed statistically in order to determine the variation law of the mechanical properties of porous materials. Moreover, this paper gives fitting formulas for the mechanical properties of different materials. This is very useful for researchers estimating the mechanical properties of porous materials in advance.


2010 ◽  
Vol 34-35 ◽  
pp. 641-645
Author(s):  
Hong Shuang Zhang

In order to fully understanding the distribution of residual stress after riveting and the relationship between residual stress and riveting process parameters during riveting, Finite Element Method was used to establish a riveting model. Quasi-static method to solve the convergence difficulties was adopted in riveting process. The riveting process was divided into six stages according to the stress versus time curves. The relationship of residual stress with rivet length and rivet hole clearance were established. The results show numerical simulation is effective for riveting process and can make a construction for the practical riveting.


Sign in / Sign up

Export Citation Format

Share Document