scholarly journals Selective Elicitation of the Phytoalexin Rutalexin in Rutabaga and Turnip Roots by a Biotrophic Plant Pathogen

2008 ◽  
Vol 3 (8) ◽  
pp. 1934578X0800300
Author(s):  
M. Soledade C. Pedras ◽  
Ravi S. Gadagi ◽  
Qing-An Zheng ◽  
S. Roger Rimmer

Stress responses of roots of rutabaga ( Brassica napus ssp. napobrassica) and turnip ( B. rapa ssp. rapa) were analyzed. Phytoalexin production due to biotic elicitation by the biotroph Albugo candida and abiotic elicitation using UV irradiation was quantified by HPLC. The phytoalexin rutalexin was produced in substantially higher amounts in rutabaga and turnip roots inoculated with A. candida than in UV irradiated roots. By contrast, production of the phytoalexins brassinin in rutabaga and cyclobrassinin in turnip was higher in UV irradiated roots than in roots inoculated with A. candida. Overall, the results suggest that A. candida is able to redirect the phytoalexin biosynthetic pathway towards rutalexin, a phytoalexin substantially less inhibitory than either brassinin or cyclobrassinin.

2022 ◽  
Vol 23 (2) ◽  
pp. 614
Author(s):  
Weiqi Sun ◽  
Mengdi Li ◽  
Jianbo Wang

Brassica napus and its diploid progenitors (B. rapa and B. oleracea) are suitable for studying the problems associated with polyploidization. As an important anti-stress protein, RCI2 proteins widely exist in various tissues of plants, and are crucial to plant growth, development, and stress response. In this study, the RCI2 gene family was comprehensively identified and analyzed, and 9, 9, and 24 RCI2 genes were identified in B. rapa, B. oleracea, and B. napus, respectively. Phylogenetic analysis showed that all of the identified RCI2 genes were divided into two groups, and further divided into three subgroups. Ka/Ks analysis showed that most of the identified RCI2 genes underwent a purifying selection after the duplication events. Moreover, gene structure analysis showed that the structure of RCI2 genes is largely conserved during polyploidization. The promoters of the RCI2 genes in B. napus contained more cis-acting elements, which were mainly involved in plant development and growth, plant hormone response, and stress responses. Thus, B. napus might have potential advantages in some biological aspects. In addition, the changes of RCI2 genes during polyploidization were also discussed from the aspects of gene number, gene structure, gene relative location, and gene expression, which can provide reference for future polyploidization analysis.


1962 ◽  
Vol 40 (1) ◽  
pp. 53-59 ◽  
Author(s):  
B. I. S. Srivastava ◽  
Michael Shaw ◽  
T. C. Vanterpool

IAA, IAN, accelerator α, and an ether-insoluble growth substance (designated as 'A') were found in alcohol extracts of healthy inflorescences of Brassica napus L. and in smaller amounts in the malformed, parasitized inflorescences produced by plants infected with Albugo Candida (Pers. ex Chev.) Kuntze. The total activity of diseased extracts (≡ 915 μg IAA/kg fresh weight) was only 61% of that of healthy ones. IAN accounted for approximately 86% of the total activity in both extracts. Brassica is thus a good source of IAN. Both IAA and IAN were identified by their chromogenic reactions, ultraviolet spectra, and Rf values in two solvent systems. Alkaline hydrolysis of 'A' produced an ether-soluble, Ehrlich-positive spot with the same Rf value as IAA. The results are discussed briefly.


2021 ◽  
Vol 118 (23) ◽  
pp. e2019863118
Author(s):  
Max A. Simon ◽  
Chayanid Ongpipattanakul ◽  
Satish K. Nair ◽  
Wilfred A. van der Donk

The epoxide-containing phosphonate natural product fosfomycin is a broad-spectrum antibiotic used in the treatment of cystitis. Fosfomycin is produced by both the plant pathogen Pseudomonas syringae and soil-dwelling streptomycetes. While the streptomycete pathway has recently been fully elucidated, the pseudomonad pathway is still mostly elusive. Through a systematic evaluation of heterologous expression of putative biosynthetic enzymes, we identified the central enzyme responsible for completing the biosynthetic pathway in pseudomonads. The missing transformation involves the oxidative decarboxylation of the intermediate 2-phosphonomethylmalate to a new intermediate, 3-oxo-4-phosphonobutanoate, by PsfC. Crystallographic studies reveal that PsfC unexpectedly belongs to a new class of diiron metalloenzymes that are part of the polymerase and histidinol phosphatase superfamily.


2020 ◽  
Vol 21 (3) ◽  
pp. 953 ◽  
Author(s):  
Shihang Fan ◽  
Hongfang Liu ◽  
Jing Liu ◽  
Wei Hua ◽  
Shouming Xu ◽  
...  

DNA methylation is a process through which methyl groups are added to the DNA molecule, thereby modifying the activity of a DNA segment without changing the sequence. Increasing evidence has shown that DNA methylation is involved in various aspects of plant growth and development via a number of key processes including genomic imprinting and repression of transposable elements. DNA methylase and demethylase are two crucial enzymes that play significant roles in dynamically maintaining genome DNA methylation status in plants. In this work, 22 DNA methylase genes and six DNA demethylase genes were identified in rapeseed (Brassica napus L.) genome. These DNA methylase and DNA demethylase genes can be classified into four (BnaCMTs, BnaMET1s, BnaDRMs and BnaDNMT2s) and three (BnaDMEs, BnaDML3s and BnaROS1s) subfamilies, respectively. Further analysis of gene structure and conserved domains showed that each sub-class is highly conserved between rapeseed and Arabidopsis. Expression analysis conducted by RNA-seq as well as qRT-PCR suggested that these DNA methylation/demethylation-related genes may be involved in the heat/salt stress responses in rapeseed. Taken together, our findings may provide valuable information for future functional characterization of these two types of epigenetic regulatory enzymes in polyploid species such as rapeseed, as well as for analyzing their evolutionary relationships within the plant kingdom.


1959 ◽  
Vol 37 (2) ◽  
pp. 169-172 ◽  
Author(s):  
T. C. Vanterpool

In addition to the well-known sessile vesicular zoosporangial type of oöspore germination in Albugo candida (Lév.) Kuntze, a second type is described. This consists of an exit tube one to two and a half times the length of the diameter of the oöspore and about one quarter of its width, at the end of which the vesicular zoosporangium is produced. Best results were secured by soaking the oöspores for 7 to 10 days in water at 10° to 12 °C and then changing to fresh water. The oöspore material came from hypertrophied inflorescences of rape (Brassica napus L. var. annua Koch).


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jinjing Guo ◽  
Xiaoxi Liu ◽  
Yuanjie Li ◽  
Hongyan Ji ◽  
Cheng Liu ◽  
...  

Abstract Background Hispidin (HIP) and its derivatives, a class of natural fungal metabolites, possess complex chemical structures with extensive pharmacological activities. Phellinus igniarius, the most common source of HIP, can be used as both medicine and food. However, the biosynthetic pathway of HIP in P. igniarius remains unclear and we have a limited understanding of the regulatory mechanisms related to HIP. In this work, we sought to illustrate a biosynthesis system for hispidin and its derivatives at the protein level. Results We found that tricetolatone (TL) is a key biosynthetic precursor in the biosynthetic pathway of hispidin and that its addition led to increased production of hispidin and various hispidin derivatives. Based on the changes in the concentrations of precursors and intermediates, key timepoints in the biosynthetic process were identified. We used isobaric tags for relative and absolute quantification (iTRAQ) to study dynamic changes of related proteins in vitro. The 270 differentially expressed proteins were determined by GO enrichment analysis to be primarily related to energy metabolism, oxidative phosphorylation, and environmental stress responses after TL supplementation. The differentially expressed proteins were related to ATP synthase, NAD binding protein, oxidoreductase, and other elements associated with electron transfer and dehydrogenation reactions during the biosynthesis of hispidin and its derivatives. Multiple reaction monitoring (MRM) technology was used to selectively verify the iTRAQ results, leading us to screen 11 proteins that were predicted to be related to the biosynthesis pathways. Conclution These findings help to clarify the molecular mechanism of biosynthesis of hispidin and its derivatives and may serve as a foundation for future strategies to identify new hispidin derivatives.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Rehman Sarwar ◽  
Ting Jiang ◽  
Peng Ding ◽  
Yue Gao ◽  
Xiaoli Tan ◽  
...  

Abstract Background Brassica napus is an essential crop for oil and livestock feed. Eventually, this crop's economic interest is at the most risk due to anthropogenic climate change. DELLA proteins constitute a significant repressor of plant growth to facilitate survival under constant stress conditions. DELLA proteins lack DNA binding domain but can interact with various transcription factors or transcription regulators of different hormonal families. Significant progress has been made on Arabidopsis and cereal plants. However, no comprehensive study regarding DELLA proteins has been delineated in rapeseed. Results In our study, we have identified 10 BnaDELLA genes. All of the BnaDELLA genes are closely related to five AtDELLA genes, suggesting a relative function and structure. Gene duplication and synteny relationship among Brassica. napus, Arabidopsis. thaliana, Brassica rapa, Brassica oleracea, and Brassica nigra genomes were also predicted to provide valuable insights into the BnaDELLA gene family evolutionary characteristics. Chromosomal mapping revealed the uneven distribution of BnaDELLA genes on eight chromosomes, and site-specific selection assessment proposes BnaDELLA genes purifying selection. The motifs composition in all BnaDELLA genes is inconsistent; however, every BnaDELLA gene contains 12 highly conserved motifs, encoding DELLA and GRAS domains. The two known miRNAs (bna-miR6029 and bna-miR603) targets BnaC07RGA and BnaA09GAI, were also predicted. Furthermore, quantitative real-time PCR (qRT-PCR) analysis has exhibited the BnaDELLA genes diverse expression patterns in the root, mature-silique, leaf, flower, flower-bud, stem, shoot-apex, and seed. Additionally, cis-acting element prediction shows that all BnaDELLA genes contain light, stress, and hormone-responsive elements on their promoters. The gene ontology (GO) enrichment report indicated that the BnaDELLA gene family might regulate stress responses. Combine with transcriptomic data used in this study, we detected the distinct expression patterns of BnaDELLA genes under biotic and abiotic stresses. Conclusion In this study, we investigate evolution feature, genomic structure, miRNAs targets, and expression pattern of the BnaDELLA gene family in B. napus, which enrich our understanding of BnaDELLA genes in B. napus and suggests modulating individual BnaDELLA expression is a promising way to intensify rapeseed stress tolerance and harvest index.


2021 ◽  
Vol 22 (9) ◽  
pp. 4671
Author(s):  
Yunyou Nan ◽  
Yuyu Xie ◽  
Ayub Atif ◽  
Xiaojun Wang ◽  
Yanfeng Zhang ◽  
...  

Slow type anion channels (SLAC/SLAHs) play important roles during anion transport, growth and development, abiotic stress responses and hormone responses in plants. However, there is few report on SLAC/SLAHs in rapeseed (Brassica napus). Genome-wide identification and expression analysis of SLAC/SLAH gene family members were performed in B. napus. A total of 23 SLAC/SLAH genes were identified in B. napus. Based on the structural characteristics and phylogenetic analysis of these members, the SLAC/SLAHs could be classified into three main groups. Transcriptome data demonstrated that BnSLAH3 genes were detected in various tissues of the rapeseed and could be up-regulated by low nitrate treatment in roots. BnSLAC/SLAHs were exclusively localized on the plasma membrane in transient expression of tobacco leaves. These results will increase our understanding of the evolution and expression of the SLAC/SLAHs and provide evidence for further research of biological functions of candidates in B. napus.


Water ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1667 ◽  
Author(s):  
Michael Santangeli ◽  
Concetta Capo ◽  
Simone Beninati ◽  
Fabrizio Pietrini ◽  
Cinzia Forni

Soil salinity is considered one of the most severe abiotic stresses in plants; plant acclimation to salinity could be a tool to improve salt tolerance even in a sensitive genotype. In this work we investigated the physiological mechanisms underneath the response to gradual and prolonged exposure to sodium chloride in cultivars of Brassica napus L. Fifteen days old seedlings of the cultivars Dynastie (salt tolerant) and SY Saveo (salt sensitive) were progressively exposed to increasing soil salinity conditions for 60 days. Salt exposed plants of both cultivars showed reductions of biomass, size and number of leaves. However, after 60 days the relative reduction in biomass was lower in sensitive cultivar as compared to tolerant ones. An increase of chlorophylls content was detected in both cultivars; the values of the quantum efficiency of PSII photochemistry (ΦPSII) and those of the electron transport rate (ETR) indicated that the photochemical activity was only partially reduced by NaCl treatments in both cultivars. Ascorbate peroxidase (APX) activity was higher in treated samples with respect to the controls, indicating its activation following salt exposure, and confirming its involvement in salt stress response. A gradual exposure to salt could elicit different salt stress responses, thus preserving plant vitality and conferring a certain degree of tolerance, even though the genotype was salt sensitive at the seed germination stage. An improvement of salt tolerance in B. napus could be obtained by acclimation to saline conditions.


Sign in / Sign up

Export Citation Format

Share Document