scholarly journals Chemical Constituents and Antimicrobial Activities of Canthium horridum

2010 ◽  
Vol 5 (6) ◽  
pp. 1934578X1000500 ◽  
Author(s):  
Biao Yang ◽  
Guangying Chen ◽  
Xiaoping Song ◽  
Zhong Chen ◽  
Xinming Song ◽  
...  

Bioassay-guided isolation studies of the extract of Canthium horridum Bl. stem led to the isolation of ten compounds: (+)-syringaresinol (1), scoparone (2), scopoletin (3), 3′-methoxy-4′-hydroxy- trans-cinnamaldehyde (4), sinapic aldehyde (5), syringic acid (6), mannitol (7), vanillic acid 4- O-β-D-glucopyranoside (8), β-daucosterol (9), and β-sitosterol (10). Compounds 1-10 were reported for the first time from this species, and compounds 1, 4, 5, 6, and 8 from the genus. The antimicrobial activities of the isolated compounds were studied; 6 had the highest activity against Bacillus subtilis, but 1 showed good activity against Escherichia coli, Bacillus subtilis and Staphylococcus aureus. Compounds 2, 4 and 6 also inhibited the growth of these three bacteria. None of the compounds demonstrated inhibitory activity against Aspergillus niger.

2020 ◽  
pp. 1-3
Author(s):  
Dunjia Wang ◽  
Dan Wang ◽  
Dunjia Wang ◽  
Heng Lyu ◽  
Hengyi Du ◽  
...  

Eight novel containing sulfur heterocyclic curcumins were synthesized and characterized by 1H-NMR, FTIR and MS spectroscopy. Their antimicrobial activities against Staphylococcus aureus, Bacillus subtilis, Escherichia coli and Aspergillus niger were also tested for MIC by using serial tube dilution method. The results showed that the antimicrobial activities of synthesized curcumin derivatives were better than curcumin. Especially, the compound 4-(1,3-dithiolan-2-ylidene)-1,7-di(thiophen-2-yl) hepta-1,6-diene-3,5- dione (2g) exhibited excellent the antimicrobial activities among these curcumin derivatives.


2013 ◽  
Vol 85 (4) ◽  
pp. 1247-1253 ◽  
Author(s):  
Eduardo A.A. Pinheiro ◽  
Josiwander M. Carvalho ◽  
Diellem C.P. dos Santos ◽  
Andre O. Feitosa ◽  
Patricia S.B. Marinho ◽  
...  

The present work reports the isolation of five compounds from Aspergillus sp EJC08 isolated as endophytic from Bauhinia guianensis, a tipical plant of the Amazon. The compounds ergosterol (1), ergosterol peroxide (2), mevalolactone (3), monomethylsulochrin (4) and trypacidin A (5) were isolated by chromatographic procedures and identified by spectral methods of 1D and 2D NMR and MS. Compounds 3, 4 and 5 were tested against Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis and Staphylococcus aureus and showed good activity.


2020 ◽  
Vol 15 (6) ◽  
pp. 665-679
Author(s):  
Alok K. Srivastava ◽  
Lokesh K. Pandey

Background: [1, 3, 4]oxadiazolenone core containing chalcones and nucleosides were synthesized by Claisen-Schmidt condensation of a variety of benzaldehyde derivatives, obtained from oxidation of substituted 5-(3/6 substituted-4-Methylphenyl)-1, 3, 4-oxadiazole-2(3H)-one and various substituted acetophenone. The resultant chalcones were coupled with penta-O-acetylglucopyranose followed by deacetylation to get [1, 3, 4] oxadiazolenone core containing chalcones and nucleosides. Various analytical techniques viz IR, NMR, LC-MS and elemental analysis were used to confirm the structure of the synthesised compounds.The compounds were targeted against Bacillus subtilis, Staphylococcus aureus and Escherichia coli for antibacterial activity and Aspergillus flavus, Aspergillus niger and Fusarium oxysporum for antifungal activity. Methods: A mixture of Acid hydrazides (3.0 mmol) and N, Nʹ- carbonyl diimidazole (3.3 mmol) in 15 mL of dioxane was refluxed to afford substituted [1, 3, 4]-oxadiazole-2(3H)-one. The resulted [1, 3, 4]- oxadiazole-2(3H)-one (1.42 mmol) was oxidized with Chromyl chloride (1.5 mL) in 20 mL of carbon tetra chloride and condensed with acetophenones (1.42 mmol) to get chalcones 4. The equimolar ratio of obtained chalcones 4 and β -D-1,2,3,4,6- penta-O-acetylglucopyranose in presence of iodine was refluxed to get nucleosides 5. The [1, 3, 4] oxadiazolenone core containing chalcones 4 and nucleosides 5 were tested to determined minimum inhibitory concentration (MIC) value with the experimental procedure of Benson using disc-diffusion method. All compounds were tested at concentration of 5 mg/mL, 2.5 mg/mL, 1.25 mg/mL, 0.62 mg/mL, 0.31 mg/mL and 0.15 mg/mL for antifungal activity against three strains of pathogenic fungi Aspergillus flavus (A. flavus), Aspergillus niger (A. niger) and Fusarium oxysporum (F. oxysporum) and for antibacterial activity against Gram-negative bacterium: Escherichia coli (E. coli), and two Gram-positive bacteria: Staphylococcus aureus (S. aureus) and Bacillus subtilis(B. subtilis). Result: The chalcones 4 and nucleosides 5 were screened for antibacterial activity against E. coli, S. aureus and B. subtilis whereas antifungal activity against A. flavus, A. niger and F. oxysporum. Compounds 4a-t showed good antibacterial activity whereas compounds 5a-t containing glucose moiety showed better activity against fungi. The glucose moiety of compounds 5 helps to enter into the cell wall of fungi and control the cell growth. Conclusion: Chalcones 4 and nucleosides 5 incorporating [1, 3, 4] oxadiazolenone core were synthesized and characterized by various spectral techniques and elemental analysis. These compounds were evaluated for their antifungal activity against three fungi; viz. A. flavus, A. niger and F. oxysporum. In addition to this, synthesized compounds were evaluated for their antibacterial activity against gram negative bacteria E. Coli and gram positive bacteria S. aureus, B. subtilis. Compounds 4a-t showed good antibacterial activity whereas 5a-t showed better activity against fungi.


2018 ◽  
Vol 13 (4) ◽  
pp. 1934578X1801300 ◽  
Author(s):  
Ngonye Keroletswe ◽  
Runner R. T. Majinda ◽  
Ishmael B. Masesane

One new 3-prenyl-2-flavene, named baphiflavene A, 1, and eleven known compounds, 2-12, were isolated and reported for the first time from Baphia massaiensis using several chromatographic techniques. Their structures were elucidated using different spectroscopic techniques; 1D and 2D-NMR, HRMS, GC-MS, UV/Vis, FTIR and by comparison with literature data. The isolates were tested against Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, Escherichia coli and Candida albicans to establish their preliminary antimicrobial activities. The results revealed that compound 1 had moderate activities against both Gram positive ( B. subtilis and S. aureus) and Gram negative ( E. coli and P. aeruginosa) bacteria, and good activity against C. albicans with inhibition zones of 10–23 mm (compared to 19 mm for chloramphenicol and miconazole standards). To the best of our knowledge, this is the first phytochemical work reported on Baphia massaiensis.


2000 ◽  
Vol 55 (9-10) ◽  
pp. 778-784 ◽  
Author(s):  
Josep Serra Bonvehí ◽  
Francesc Ventura Coll

Abstract The composition, bacteriostatic and ROO• -scavenging potential activities of fifteen propolis samples from various botanic and geographic origins were determined to obtain objective information related to propolis quality. Variance analysis showed significant differences (p ≤ 0.05) in the contents of polyphenols, flavonoids and active components between fresh and aged propolis. The state of the product (fresh or aged) could be differentiate by using flavonoid pattern and biological activities. A minimum propolis concentration of 80 μg/ml was required inhibit Bacillus subtilis and Staphylococcus aureus while 800 μg/ml was required to inhibit Escherichia coli using fresh propolis. Aged propolis inhibit B. subtilis and S. aureus at concentration of 100 μg/ml and E. coli at 1000 μg/ml. A minimum flavonoids percentage of 18 g/100 g and a maximum ROO• -scavenging potential activity of 4.3 μg/ml were determined in fresh propolis. Flavonoids levels in aged propolis were approximately 20% lower than in fresh propolis. A maximum flavonoids percentage of 19.8 g/100 g and a ROO•-scavenging potential activity between 5.7 to 6.4 μg/ml in aged propolis were quantified. Another objective was to assess the use of ROO•-scavenging potential activity in propolis quality.


2020 ◽  
Vol 1 (2) ◽  
pp. 41-45
Author(s):  
A.Suparlan Isya Syamsu

Preliminary research has been conducted on the antimicrobial activity of n-Butanol extract of forest honey (Apis nigrocincta). This study aims to determine the antimicrobial activity of forest honey from Selayar Regency on the growth of test microbes, using the method of solid dilution with the test microbial Bacillus subtilis, Staphylococcus aureus, Streptococcus mutans, Pseudomonas aeruginosa, Salmonella typhi, Escherichia coli, Vibrio sp, Staphylococcus epidermidis, and Candida albicans against n-butanol extract from forest honey (Apis nigrocincta) at 1 mg/ml. The results obtained showed that n-butanol extract inhibited the growth of bacteria Bacillus subtilis, Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis, and Staphylococcus aureus. To estimate the compounds that provide antimicrobial activity, the TLC-Bioautography test is performed. Obtained the best results from the separation of compounds by TLC using Chlorophorom eluate: Acetone (3: 1). The TLC-Bioautographic test results showed that the spots with an Rf value of 0.29 gave activity to Bacillus subtilis, Escherichia coli, and Staphylococcus epidermidis, and gave positive results on the appearance of flavonoid compounds.


2021 ◽  
Vol 251 ◽  
pp. 02061
Author(s):  
Xiaojuan Gao ◽  
Xiaoshi Lu ◽  
Zifeng Wang ◽  
Guangpeng Liu ◽  
Xinjun Li

Taking monascin as the research object, monascin was extracted from red kojic rice by ethanol extraction and extracted with 60%, 70% and 80% ethanol respectively. Finally, it was concluded that when the concentration of ethanol was 70%, the extraction rate of monascin was the highest, reached 75.68%. The bacteriostatic experiments of monascin extract and monascin fermentation showed that it had strong inhibitory effect on Staphylococcus aureus and Bacillus subtilis, weak inhibitory ability on Escherichia coli and Aspergillus niger, and no obvious inhibitory effect on the growth of Saccharomyces cerevisiae.


2020 ◽  
Vol 16 (4) ◽  
pp. 514-520
Author(s):  
Marwa A. Sh. Shehab ◽  
Mohamed El-Naggar ◽  
Rabab A. Ismail ◽  
Hala M. El Kafrawy ◽  
Amira Abood ◽  
...  

Background: Amongst the quinolone core structures, 8-hydroxyquinoline (8-HQ or quinolinol) stands out as the greatest frequently used therapeutic moietiy. This includes the most critical molecules in medicinal chemistry. Quinolinol remains a broad-spectrum ligand capable of chelating to a large number of metal ions. Methods: The synthesized quinolinols Mannich bases were screened for their in vitro antimicrobial activity against Staphylococcus aureus (ATTCC 6538), Escherichia coli (ATTCC 7839), Klebsiella pneumonia (ATCC10131). The antifungal activity of the prepared compounds was assessed against Candida albicans (10231), Aspergillus niger and Penicillium sp. The antioxidant activity of the established compounds was assessed by means of α, α-diphenyl-β-picrylhydrazyl (DPPH) free radical scavenging method. Results: The antimicrobial outcomes indicated that all the synthesized compounds excluding 5 and 9b displayed reasonable antibacterial activity against Staphylococcus aureus (ATTCC 6538) and Escherichia coli (ATTCC 7839) with an inhibition zones ranging from 13 to 23 mm. However, in the case of Klebsiella pneumonia (ATCC10131) only compound 6 did not show any activity. The results also indicated that compounds 2b and 3 were the most potent antibacterial compounds against the verified strains with minimum inhibitory concentration (MIC) values ranging from 0.05 to 0.5mg/ml. In the antifungal assay, all compounds showed good activity against Candida albicans (10231) except compounds 5 and 9b. However, in the case of Aspergillus niger and Penicillium sp. only compounds 2b and 3 showed good activity. In the antifungal assay, MIC values for compounds 2b and 3 ranged from 0.25 to 2.5 mg/ml against the specified fungal strains. The antioxidant activity was assessed using the DPPH scavenging activity method. The results indicated that 2b was the most active among all tested compounds, with almost double the antioxidant activity as compared with that of trolox (positive control). Conclusion: In this work, we describe the synthesis of new Mannich bases comprising 8-HQ (1) and its derivative (8). The resulted Mannich bases of type 2 were used in transamination reactions with hydrazine and hydrazine derivatives. The structures of the newly synthesized Mannich bases were confirmed based on the NMR spectroscopic data and elemental analysis. Antimicrobial and antioxidant activities were also assessed.


2012 ◽  
Vol 65 (4) ◽  
pp. 343 ◽  
Author(s):  
Mei Zhang ◽  
Dong-Mei Xian ◽  
Hai-Hua Li ◽  
Ji-Cai Zhang ◽  
Zhong-Lu You

A series of new halo-substituted aroylhydrazones have been prepared and structurally characterized by elemental analysis, 1H NMR, 13C NMR, and IR spectra, and single crystal X-ray diffraction. The compounds were evaluated for their antibacterial (Bacillus subtilis, Staphylococcus aureus, Escherichia coli, and Pseudomonas fluorescence) and antifungal (Candida albicans and Aspergillus niger) activities by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) method. Among the tested compounds, N′-(2-chloro-5-nitrobenzylidene)-2-fluorobenzohydrazide showed the most effective antimicrobial activity with minimum inhibitory concentration values of 0.82, 2.5, 1.7, 15.2, and 37.5 μg mL–1 against B. subtilis, S. aureus, E. coli, P. fluorescence, and C. albicans, respectively. The biological assay indicated that the presence of the electron-withdrawing groups in the aroylhydrazones improved their antimicrobial activities.


Sign in / Sign up

Export Citation Format

Share Document