scholarly journals Chemical Composition of the Essential Oil from the Roots of Ferula kuhistanica Growing Wild in Tajikistan

2018 ◽  
Vol 13 (2) ◽  
pp. 1934578X1801300 ◽  
Author(s):  
Payrav D. Khalifaev ◽  
Farukh S. Sharopov ◽  
Abduahad Safomuddin ◽  
Sodik Numonov ◽  
Mahinur Bakri ◽  
...  

Three samples of Ferula kuhistanica were collected from two different locations in the central part of Tajikistan. The essential oils were obtained by hydrodistillation and analyzed by GC-FID and GC-MS. A total of 77 compounds were identified representing 95.8-99.9 % of total oil compositions. The essential oils of the roots of F. kuhistanica were dominated by the monoterpene hydrocarbons α-pinene (57.7-70.6%), β-pinene (8.2-27.1%), β-phellandrene (0.1-7.2%), and myrcene (1.5-2%). To our best knowledge, this is the first report concerning the chemical composition of the essential oil obtained from the roots of F. kuhistanica.

2019 ◽  
Vol 14 (1) ◽  
pp. 1934578X1901400 ◽  
Author(s):  
José V. Martínez-Arévalo ◽  
Sully M. Cruz ◽  
Miriam A. Apel ◽  
Amélia T. Henriques ◽  
Armando Cáceres

Essential oils of leaves of the endemic species Piper oradendron Trel. & Standl. (Piperaceae) were obtained from three sites of the Guatemalan Pacific slope. The yields of the essential oils obtained by hydrodistillation varied from the site of collection (0.4-1.4%). The GC/MS analysis showed that sample A (Samayac) had up to 53 peaks that were identified, B (Popoyá) showed 31 peaks and C (Bulbuxyá) showed 22; major constituents were similar in the three samples, including α- and β-pinene (28.3-46.9%), germacrene D (10.7-22.7%), and iso-spathulenol (10.2-22-3%). This is the first report on the chemical composition of the essential oil of samples of P. oradendron from different provenances of Guatemala, suggesting little variability in its main components.


2015 ◽  
Vol 43 (2) ◽  
pp. 432-438 ◽  
Author(s):  
Aneta WESOŁOWSKA ◽  
Monika GRZESZCZUK ◽  
Dorota JADCZAK ◽  
Paweł NAWROTEK ◽  
Magdalena STRUK

The chemical composition of the essential oils obtained by hydrodistillation from the aerial parts of Thymus serpyllum and Thymus serpyllum‘Aureus’ has been investigated by gas chromatography-mass spectrometry (GC-MS). Forty-seven compounds (99.67% of the total oil) wereidentified in the essential oil of T. serpyllum. The main components found in the oil were carvacrol (37.49%), -terpinene (10.79%), -caryophyllene (6.51%), p-cymene (6.06%), (E)--ocimene (4.63%) and -bisabolene (4.51%). Similarly, carvacrol (44.93%), -terpinene(10.08%), p-cymene (7.39%) and -caryophyllene (6.77%) dominated in the oil of T. serpyllum ‘Aureus’. A total of forty three compounds wereidentified in this oil, representing 99.49% of the total oil content. On the basis of the obtained data it was proved that the content of 1-octen-3-ol,eucalyptol, (Z)--ocimene, (E)--ocimene, -terpinene, carvacrol methyl ether, germacrene D and -bisabolene was significantly higher for T.serpyllum while T. serpyllum ‘Aureus’ was characterized by a significantly higher content of 3-octanone, 3-octanol, p-cymene, borneol andcarvacrol. The isolated essential oils were evaluated for their antimicrobial activity against nine reference strains (Escherichia coli, Staphylococcusaureus, Staphylococcus epidermidis, Streptococcus agalactiae, Enterococcus faecalis, Bacillus cereus, Micrococcus luteus, Proteus vulgaris and Candidaalbicans) by the microdilution technique. Based on this test, the minimum inhibitory concentrations (MIC) of essential oil were calculated. Thevolatile oil obtained from T. serpyllum showed the highest antimicrobial activity relative to the strain of E. coli (MIC=0.025 μL/mL) and to theyeast C. albicans (MIC=0.05 μL/mL). Similarly, a significant antimicrobial activity exhibited T. serpyllum ‘Aureus’ essential oil, although the MICvalues obtained in that case for E. coli and C. albicans strains were twice as high and were respectively 0.05 μL/mL and 0.1 μL/mL.


2009 ◽  
Vol 4 (12) ◽  
pp. 1934578X0900401 ◽  
Author(s):  
Abeer Temraz ◽  
Pier Luigi Cioni ◽  
Guido Flamini ◽  
Alessandra Braca

The essential oil obtained from the leaves and flowers of Jasminum pubescens (Retz.) Willd. (Oleaceae) has been analyzed by GC/MS. Sixty-three and sixty-four components of the essential oils, representing 95.0% of the total oil for the leaves and 91.9% for the flowers, were identified, respectively. Both the oils were mainly constituted by non-terpene derivatives (58.2% and 50.8%, respectively), among which aldehydes (44.7%) characterized the essential oil from the leaves. Besides aldehydes (14.3%) and other carbonylic compounds (acids, esters, and ketones, 38.1%) were the main non-terpene compounds of the oil from the flowers.


2012 ◽  
Vol 7 (5) ◽  
pp. 1934578X1200700
Author(s):  
Nenad Vukovic ◽  
Miroslava Kacaniova ◽  
Lukas Hleba ◽  
Slobodan Sukdolak

The essential oils from different aerial parts of Lonicera japonica have been extracted by hydro-distillation and analyzed by gas chromatography and gas chromatography coupled with mass spectrometry. Quantitative and qualitative differences were found between the analyzed plant parts. A total of eighty-nine compounds were identified. The main constituents were ( Z, Z)-farnesole (16.2%) and linalool (11.0%) for the flowers fraction, hexadecanoic acid (16.0%) and linalool (8.7%) for the leaves fraction, and hexadecanoic acid (31.4%) for the stems. Monoterpene hydrocarbons were absent from all the oils, and oxygenated sesquiterpenes were not identified in the essential oil of the stem.


Author(s):  
Belbache Hanene ◽  
Mechehoud Youcef ◽  
Chalchat Jean-Claude ◽  
Figueredo Gilles ◽  
Chalard Pierre ◽  
...  

The essential oil of the aerial parts of Centaurea sempervirens L. (Asteraceae), synonym : Cheirolophus sempervirens (L.) Pomel, was obtained by steam distillation and analyzed by GC-FID and GC-MS. 30 components were identified corresponding to 78.5% of the total oil. Among the identified constituents, oxygenated compounds represented 33.4%, from which 21.2% were hydrocarbons, 10.7% were sesquiterpenes. The non oxygenated compounds were hydrocarbons (9.8%). Phthalates represented 35.3% of the total oil. The major components were 6,10,14-trimethylpentadecan-2-one (12.4%) and epi-torilenol (5.1%). This is the first report on the chemical composition of the essential oil of this species.


2016 ◽  
Vol 11 (6) ◽  
pp. 1934578X1601100 ◽  
Author(s):  
David Garcia-Rellán ◽  
Mercedes Verdeguer ◽  
Adele Salamone ◽  
Maria Amparo Blázquez ◽  
Herminio Boira

The chemical composition of essential oils from Satureja cuneifolia growing in east Spain was analyzed by GC, GC/MS. Forty-five compounds accounting for 99.1% of the total oil were identified. Camphor (47.6%), followed by camphene (13.6%) were the main compounds. Their herbicidal and antifungal activity was tested in vitro against three weeds (Amaranthus hybridus, Portulaca oleracea and Conyza canadensis) and eleven common pathogenic or saprophytic fungi (Phytophthora citrophthora, P. palmivora, Pythium litorale, Verticillium dahlia, Rhizoctonia solani, Penicillium hirsutum, Colletotrichum gloeosporioides, Phaeoacremonium aleophilum, Phaemoniella chlamydospora, Cylindrocarpon liriodendri and C. macrodidymum). The essential oil was very active against A. hybridus and C. canadensis significantly inhibiting their germination and seedling growth. Minor activity was shown against P. oleracea, depending on the concentration applied. P. palmivora, P. citrophthora and Pa. chlamydospora were the most sensitive fungi to the treatment with the essential oil, whereas R. solani showed no inhibition. Results showed that S. cuneifolia essential oil could be used for biocontrol of weeds and fungal plant diseases.


2012 ◽  
Vol 7 (2) ◽  
pp. 1934578X1200700 ◽  
Author(s):  
Asta Judzentiene ◽  
Rita Butkiene ◽  
Jurga Budiene ◽  
Félix Tomi ◽  
Joseph Casanova

For the first time, the chemical composition of the seed essential oil of Rhododendron tomentosum was determined. Forty-seven compounds were identified, comprising 91.7% of the total oil. Palustrol (38.3%) and ledol (27.0%) were the predominant constituents. Some constituents, such as β-pinene oxide, iso-menthyl acetate, nerolidyl acetate, cadalene and guaiazulene were characteristic only for the seeds and were identified for the first time in Rh. tomentosum oils. For comparison purposes, the essential oil isolated from the shoots of the same plant were analyzed [GC(FID) in combination with RIs, GC-MS and 13C NMR]. More than a half of the oil was comprised of ledol (36.5%) and palustrol (21.0%). Quantitative analysis of ascaridol, a heat-sensitive compound, was carried out by 13C NMR spectroscopy. Indeed, ascaridol undergoes partial thermal isomerization to iso-ascaridol during GC analyses.


2021 ◽  
Vol 13 (31) ◽  
pp. 23-25
Author(s):  
Ana Dobreva ◽  

The genus Lavandula includes a variety of species under the common name lavender. Bulgaria has a tradition in the production of high-quality lavender oil. This is the result of many years of selection work, which includes the study of introduced samples and their adaptogenic abilities in the country habitat. Three samples of Lavandula angustifolia Mill., that originated from Poland were studied and compared with the Bulgarian varieties “Hemus” and “Sevtopolis”. The content of the essential oils ranged from 0.39% to 3.98%. The chemical composition, determined by GC/MS, revealed the main compounds: linalyl acetate (13.0÷44.9 %), linalool (21.8÷42.1%), β-caryophyllene (4.6÷7.4 %), cis-β ocimene (2.8÷10.5 %), lavandulyl acetate (1.9÷4.3%), terpinen-4-ol (0.3÷2.0 %), limonene+1.8 cineole (2.3÷6.0 %) and trans-β ocimene (0.1÷3.8%). The sample with the dark purple florescence showed promising quantitative and qualitative characteristics of the essential oil and can be involved in the selection program for lavender cultivation.


2020 ◽  
Vol 21 (4) ◽  
Author(s):  
Abdelkader Ounoughi ◽  
Messaoud Ramdani ◽  
Takia Lograda ◽  
Pierre Chalard ◽  
Gilles Figueredo

Abstract. Ounoughi A, Ramdani M, Lograda  T, Chalard P, Figueredo G. 2020. Chemotypes and antibacterial activities of Inula viscosa essential oils from Algeria. Biodiversitas 21: 1504-1517. The aim of this work is to investigate the chemical composition and the antibacterial activities of the essential oils from Inula viscosa (L.) Aiton. Samples were collected in the flowering stage, from different localities in Algeria. The aerial parts of I. viscosa were submitted to a hydro distillation. The chemical composition of the essential oil was analyzed by GC and GC/MS. The antibacterial activity of the essential oils was evaluated using the disc diffusion method against fifteen bacterial species. Fifty-eight compounds representing 98.93 ± 2.03% of the total oil was identified in I. viscosa. It was found that the chemical composition was dominated by the presence of the following major products: polygodial (19.8 ± 16.97%), phytol (12.3 ± 9.77%), fokienol (6.01 ± 3.43%), intermedeol neo (5.09 ± 2.38%), caryophyllene oxide (4.91 ± 3.03%), nerolidol-Z (4.46 ± 5.46%), nerolidol-E (4.24 ± 8.07%) and α-ionone iso methyl-E (3.72 ± 2.26%). The essential oil of I. viscosa has moderate activity against the bacteria tested. In contrast, the Escherichia coli ATCC 25922, Pseudomonon syringae ATCC 53543 and Enterococcus faecalis ATCC 49452 strains are resistant to I. viscosa essential oils. The phytochemical study of I. viscosa showed that it is rich in terpene compounds, with polygodial and phytol as major components. Three distinct chemotypes are highlighted. The (Polygodial-Intermedeol-neo-Phytol) chemotype of Salah Bey population and two chemotypes with Fokinol-polygodial and Fokinol-phytol. Moderate antibacterial activities of essential oils against the bacteria tested were found.


2020 ◽  
Vol 75 (7-8) ◽  
pp. 297-301
Author(s):  
Muhammad Ammar Mohd Azhar ◽  
Wan Mohd Nuzul Hakimi Wan Salleh ◽  
Shamsul Khamis

AbstractCryptocarya species are mainly distributed in Africa, Asia, Australia and South America, widely used in traditional medicines for the treatment of skin infections and diarrhea. The present investigation reports on the extraction by hydrodistillation and the chemical composition of three Cryptocarya species (Cryptocarya impressa, Cryptocarya infectoria, and Cryptocarya rugulosa) essential oils from Malaysia. The chemical composition of these essential oils was fully characterized by gas chromatography (GC-FID) and gas chromatography-mass spectrometry (GC-MS). A total of 51 components were identified in C. impressa, C. infectoria, and C. rugulosa essential oils representing 91.6, 91.4, and 83.0% of the total oil, respectively. The high percentages of α-cadinol (40.7%) and 1,10-di-epi-cubenol (13.4%) were found in C. impressa oil. β-Caryophyllene (25.4%) and bicyclogermacrene (15.2%) were predominate in C. infectoria oil. While in C. rugulosa oil, bicyclogermacrene (15.6%), δ-cadinene (13.8%), and α-copaene (12.3%) were predominate. To the best of our knowledge, there is no report on the essential oil composition of these three species.


Sign in / Sign up

Export Citation Format

Share Document