scholarly journals Evaluation In Vivo and In Vitro of the Antioxidant, Antinociceptive, and Anti-Inflammatory Activities of Biflavonoids From Ouratea hexasperma and O. ferruginea

2019 ◽  
Vol 14 (6) ◽  
pp. 1934578X1985680 ◽  
Author(s):  
Poliana de Araujo Oliveira ◽  
Queli Cristina Fidelis ◽  
Thayane Ferreira da Costa Fernandes ◽  
Milene Conceição de Souza ◽  
Dayane Magalhães Coutinho ◽  
...  

Ouratea species are used for the treatment of inflammation-related diseases such as rheumatism and arthritic disorders. The Ouratea genus is a rich source of flavonoids and bioflavonoids and for this reason we evaluated the effects of the biflavonoid fractions from the leaves of O. hexasperma (OHME) and O. ferruginea (OFME) in the in vivo model of complete Freund’s adjuvant (CFA)-induced arthritis and in the in vitro model of oxidative stress and cellular viability. The CFA-induced arthritis model in rats was followed by paw volume, articular incapacitation and Randall-selitto models, as well as quantification of cytokines and serum C-terminal telopeptide of type I collagen levels. OHME and OFME demonstrated antinociceptive and anti-inflammatory activities, as well as improvement in articular incapacity and reduction in levels of interleukin 1β (IL-1β), IL-6, tumor necrosis factor α, and type 1 collagen, and increased cell viability. No adverse effects were observed. The results suggest that OHME and OFME can reduce inflammation and bone resorption besides their antioxidant action.

Blood ◽  
1986 ◽  
Vol 67 (2) ◽  
pp. 450-457 ◽  
Author(s):  
DG Moon ◽  
JE Kaplan ◽  
JE Mazurkewicz

Plasma fibronectin (Fn) has been proposed to have an antithrombotic effect, protecting against platelet and fibrinogen consumption after injury. The current study was designed to determine the effect of plasma fibronectin on collagen-induced platelet aggregation. In vitro aggregometry using an isolated homologous rat system, demonstrated a significant (P less than .05) inhibitory effect of 120 micrograms/mL Fn on platelet aggregation as induced by 60 micrograms/mL fibrillar collagen (type I). The inhibition was evidenced by a threefold increase in lag time and a significant decrease in the rate and extent of aggregation. The hypothesis was also tested using an in vivo model of collagen-induced platelet aggregation. The model used was intravenous injection of 2 mg/kg of homologous type I collagen into anesthetized Sprague-Dawley rats. Injection of collagen preincubated with 4 mg/kg Fn resulted in significantly less thrombocytopenia and fibrinogen consumption as compared with injection of collagen alone. The results of both the in vitro and in vivo studies are consistent with the proposed antithrombotic effect of plasma fibronectin.


Blood ◽  
1986 ◽  
Vol 67 (2) ◽  
pp. 450-457 ◽  
Author(s):  
DG Moon ◽  
JE Kaplan ◽  
JE Mazurkewicz

Abstract Plasma fibronectin (Fn) has been proposed to have an antithrombotic effect, protecting against platelet and fibrinogen consumption after injury. The current study was designed to determine the effect of plasma fibronectin on collagen-induced platelet aggregation. In vitro aggregometry using an isolated homologous rat system, demonstrated a significant (P less than .05) inhibitory effect of 120 micrograms/mL Fn on platelet aggregation as induced by 60 micrograms/mL fibrillar collagen (type I). The inhibition was evidenced by a threefold increase in lag time and a significant decrease in the rate and extent of aggregation. The hypothesis was also tested using an in vivo model of collagen-induced platelet aggregation. The model used was intravenous injection of 2 mg/kg of homologous type I collagen into anesthetized Sprague-Dawley rats. Injection of collagen preincubated with 4 mg/kg Fn resulted in significantly less thrombocytopenia and fibrinogen consumption as compared with injection of collagen alone. The results of both the in vitro and in vivo studies are consistent with the proposed antithrombotic effect of plasma fibronectin.


Molecules ◽  
2019 ◽  
Vol 24 (16) ◽  
pp. 2906 ◽  
Author(s):  
Da-Le Guo ◽  
Jin-Feng Chen ◽  
Lu Tan ◽  
Meng-Ying Jin ◽  
Feng Ju ◽  
...  

Two new terpene glycosides (1–2) along with two known analogs (3–4) were obtained from the root of Sanguisorba officinalis, which is a common traditional Chinese medicine (TCM). Their structures were elucidated by nuclear magnetic resonance (NMR), electrospray ionization high resolution mass spectrometry (HRESIMS), and a hydrolysis reaction, as well as comparison of these data with the literature data. Compounds 1–4 exhibited anti-inflammatory properties in vitro by attenuating the production of inflammatory mediators, such as nitric oxide (NO) as well as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). An anti-inflammatory assay based on the zebrafish experimental platform indicated that compound 1 had good anti-inflammatory activity in vivo by not only regulating the distribution, but also by reducing the amount of the macrophages of the zebrafish exposed to copper sulfate.


Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7495
Author(s):  
Shi-Qing Cai ◽  
Qiang Zhang ◽  
Xin-Huai Zhao ◽  
Jia Shi

Flavonols possess several beneficial bioactivities in vitro and in vivo. In this study, two flavonols galangin and quercetin with or without heat treatment (100 °C for 15–30 min) were assessed for their anti-inflammatory activities in lipopolysaccharide (LPS)-stimulated rat intestinal epithelial (IEC-6) cells and whether the heat treatment caused activity changes. The flavonol dosages of 2.5-20 μmol/L had no cytotoxicity on the cells but could enhance cell viability (especially using 5 μmol/L flavonol dosage). The flavonols could decrease the production of prostaglandin E2 and three pro-inflammatory cytokines interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α, and simultaneously promote the production of two anti-inflammatory cytokines IL-10 and transforming growth factor-β. The Western-blot results verified that the flavonols could suppress the LPS-induced expression of TLR4 and phosphorylated IκBα and p65, while the molecular docking results also illustrated that the flavonols could bind with TLR4 and NF-kB to yield energy decreases of −(21.9-28.6) kJ/mol. Furthermore, an inhibitor BAY 11-7082 blocked the NF-kB signaling pathway by inhibiting the expression of phosphorylated IκBα/p65 and thus mediated the production of IL-6/IL-10 as the flavonols did, which confirmed the assessed anti-inflammatory effect of the flavonols. Consistently, galangin had higher anti-inflammatory activity than quercetin, while the heated flavonols (especially those with longer heat time) were less active than the unheated counterparts to exert these target anti-inflammatory effects. It is highlighted that the flavonols could antagonize the LPS-caused IEC-6 cells inflammation via suppressing TLR4/NF-κB activation, but heat treatment of the flavonols led to reduced anti-inflammatory efficacy.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1424
Author(s):  
Seyeon Oh ◽  
Myeongjoo Son ◽  
Joonhong Park ◽  
Donghwan Kang ◽  
Kyunghee Byun

Rosacea is a skin inflammatory condition that is accompanied by not only redness and flushing but also unseen symptoms, such as burning, stinging, and itching. TRPV1 expression in UVB-exposed skin can lead to a painful burning sensation. Upregulated TRPV1 expression helps release neuropeptides, including calcitonin gene-related peptide, pituitary adenylate cyclase-activating polypeptide, and vasoactive intestinal peptide, which can activate macrophage and inflammatory molecules. In this study, we found that radiofrequency (RF) irradiation reduced TRPV1 activation and neuropeptide expression in a UVB-exposed in vivo model and UVB- or heat-treated in an in vitro model. RF irradiation attenuated neuropeptide-induced macrophage activation and inflammatory molecule expression. Interestingly, the burning sensation in the skin of UVB-exposed mice and patients with rosacea was significantly decreased by RF irradiation. These results can provide experimental and molecular evidence on the effective use of RF irradiation for the burning sensation in patients with rosacea.


2021 ◽  
Vol 19 ◽  
pp. 228080002198969
Author(s):  
Min-Xia Zhang ◽  
Wan-Yi Zhao ◽  
Qing-Qing Fang ◽  
Xiao-Feng Wang ◽  
Chun-Ye Chen ◽  
...  

The present study was designed to fabricate a new chitosan-collagen sponge (CCS) for potential wound dressing applications. CCS was fabricated by a 3.0% chitosan mixture with a 1.0% type I collagen (7:3(w/w)) through freeze-drying. Then the dressing was prepared to evaluate its properties through a series of tests. The new-made dressing demonstrated its safety toward NIH3T3 cells. Furthermore, the CCS showed the significant surround inhibition zone than empty controls inoculated by E. coli and S. aureus. Moreover, the moisture rates of CCS were increased more rapidly than the collagen and blank sponge groups. The results revealed that the CCS had the characteristics of nontoxicity, biocompatibility, good antibacterial activity, and water retention. We used a full-thickness excisional wound healing model to evaluate the in vivo efficacy of the new dressing. The results showed remarkable healing at 14th day post-operation compared with injuries treated with collagen only as a negative control in addition to chitosan only. Our results suggest that the chitosan-collagen wound dressing were identified as a new promising candidate for further wound application.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nozomi Igarashi ◽  
Megumi Honjo ◽  
Makoto Aihara

AbstractWe examined the effects of mTOR inhibitors on the fibrotic response induced by transforming growth factor-beta2 (TGF-β2) in cultured human trabecular meshwork (hTM) cells. TGF-β2-induced expression of fibronectin, collagen type I, alpha 1 chain (COL1A1), and alpha-smooth muscle actin (αSMA) in hTM cells was examined in the presence or absence of mTOR inhibitors using quantitative real-time polymerase chain reaction, Western blotting, and immunohistochemistry. The migration rates of hTM cells were examined in the presence of TGF-β2 with or without mTOR inhibitors. An in vitro study showed that the expression of fibronectin, COL1A1, and αSMA was upregulated by TGF-β2 treatment of hTM cells; such upregulation was significantly suppressed by mTOR inhibitors. The inhibitors significantly reduced the migration rate of TGF-β2-stimulated hTM cells. mTOR inhibitors may usefully reduce the fibrotic response of hTM cells and we may have to explore if it is also effective in in vivo model.


2015 ◽  
Vol 21 (5) ◽  
pp. 273-278 ◽  
Author(s):  
Grażyna Chłoń-Rzepa ◽  
Agnieszka W. Jankowska ◽  
Małgorzata Zygmunt ◽  
Krzysztof Pociecha ◽  
Elżbieta Wyska

AbstractA series of new 8-alkoxy-1,3-dimethyl-2,6-dioxopurin-7-yl-substituted acetohydrazides and butanehydrazides 6–12 was synthesized and evaluated for the analgesic activity in two in vivo models: the writhing syndrome and the hot-plate tests. Among the investigated derivatives, compounds with N′-arylidenehydrazide moiety 9–12 show analgesic activity significantly higher than that of acetylsalicylic acid, which may indicate the importance of this structural element for analgesic properties. The lack of the activity in the hot-plate test may suggest that the analgesic activity of the newly synthesized compounds is mediated by a peripheral mechanism. The selected compounds 7 and 12 inhibit tumor necrosis factor α production in a rat model of lipopolysaccharide-induced endotoxemia, similarly to theophylline, which may confirm their anti-inflammatory properties.


2009 ◽  
Vol 297 (6) ◽  
pp. C1358-C1367 ◽  
Author(s):  
Gerald J. Atkins ◽  
Katie J. Welldon ◽  
Asiri R. Wijenayaka ◽  
Lynda F. Bonewald ◽  
David M. Findlay

The vitamin K family members phylloquinone (vitamin K1) and the menaquinones (vitamin K2) are under study for their roles in bone metabolism and as potential therapeutic agents for skeletal diseases. We have investigated the effects of two naturally occurring homologs, phytonadione (vitamin K1) and menatetrenone (vitamin K2), and those of the synthetic vitamin K, menadione (vitamin K3), on human primary osteoblasts. All homologs promoted in vitro mineralization by these cells. Vitamin K1-induced mineralization was highly sensitive to warfarin, whereas that induced by vitamins K2 and K3 was less sensitive, implying that γ-carboxylation and other mechanisms, possibly genomic actions through activation of the steroid xenobiotic receptor, are involved in the effect. The positive effect on mineralization was associated with decreased matrix synthesis, evidenced by a decrease from control in expression of type I collagen mRNA, implying a maturational effect. Incubation in the presence of vitamin K2 or K3 in a three-dimensional type I collagen gel culture system resulted in increased numbers of cells with elongated cytoplasmic processes resembling osteocytes. This effect was not warfarin sensitive. Addition of calcein to vitamin K-treated cells revealed vitamin K-dependent deposition of mineral associated with cell processes. These effects are consistent with vitamin K promoting the osteoblast-to-osteocyte transition in humans. To test whether vitamin K may also act on mature osteocytes, we tested the effects of vitamin K on MLO-Y4 cells. Vitamin K reduced receptor activator of NF-κB ligand expression relative to osteoprotegerin by MLO-Y4 cells, an effect also seen in human cultures. Together, our findings suggest that vitamin K promotes the osteoblast-to-osteocyte transition, at the same time decreasing the osteoclastogenic potential of these cells. These may be mechanisms by which vitamin K optimizes bone formation and integrity in vivo and may help explain the net positive effect of vitamin K on bone formation.


2001 ◽  
Vol 204 (3) ◽  
pp. 443-455
Author(s):  
C. Faucheux ◽  
S. Nesbitt ◽  
M. Horton ◽  
J. Price

Deer antlers are a rare example of mammalian epimorphic regeneration. Each year, the antlers re-grow by a modified endochondral ossification process that involves extensive remodelling of cartilage by osteoclasts. This study identified regenerating antler cartilage as a site of osteoclastogenesis in vivo. An in vitro model was then developed to study antler osteoclast differentiation. Cultured as a high-density micromass, cells from non-mineralised cartilage supported the differentiation of large numbers of osteoclast-like multinucleated cells (MNCs) in the absence of factors normally required for osteoclastogenesis. After 48 h of culture, tartrate-resistant acid phosphatase (TRAP)-positive mononuclear cells (osteoclast precursors) were visible, and by day 14 a large number of TRAP-positive MNCs had formed (783+/−200 per well, mean +/− s.e.m., N=4). Reverse transcriptase/polymerase chain reaction (RT-PCR) showed that receptor activator of NF κ B ligand (RANKL) and macrophage colony stimulating factor (M-CSF) mRNAs were expressed in micromass cultures. Antler MNCs have the phenotype of osteoclasts from mammalian bone; they expressed TRAP, vitronectin and calcitonin receptors and, when cultured on dentine, formed F-actin rings and large resorption pits. When cultured on glass, antler MNCs appeared to digest the matrix of the micromass and endocytose type I collagen. Matrix metalloproteinase-9 (MMP-9) may play a role in the resorption of this non-mineralised matrix since it is highly expressed in 100 % of MNCs. In contrast, cathepsin K, another enzyme expressed in osteoclasts from bone, is only highly expressed in resorbing MNCs cultured on dentine. This study identifies the deer antler as a valuable model that can be used to study the differentiation and function of osteoclasts in adult regenerating mineralised tissues.


Sign in / Sign up

Export Citation Format

Share Document