scholarly journals Nonacosan-10-ol and n-Alkanes in Needles of Pinus halepensis

2020 ◽  
Vol 15 (5) ◽  
pp. 1934578X2092097
Author(s):  
Biljana Nikolić ◽  
Marina Todosijević ◽  
Iris Đorđević ◽  
Jovana Stanković ◽  
Zorica S. Mitić ◽  
...  

In needle cuticular wax of Pinus halepensis, nonacosan-10-ol is high (77.08% on average). n-Alkanes ranged from C18 to C35 with the most dominant C27 and C29 (32.4% and 25.8%, respectively). The carbon preference index ranged from 3.2 to 5.4 (3.4 on average), while the average chain length ranged from 14.0 to 18.0 (17.2 on average). Long-chain n-alkanes strongly dominated (95.1%).

2020 ◽  
Vol 15 (5) ◽  
pp. 1934578X2092607
Author(s):  
Biljana Nikolić ◽  
Marina Todosijević ◽  
Iris Đorđević ◽  
Jovana Stanković ◽  
Zorica S. Mitić ◽  
...  

In leaf cuticular wax of Pinus pinaster, content of nonacosan-10-ol is high (77.1% on average). n-Alkanes ranged from C18 to C35 with the most dominant C29 (24.8%). The carbon preference index (CPItotal) ranged from 3.1 to 5.6 (4.0 on average), while the average chain length (ACLtotal) ranged from 14.0 to 17.0 (14.8 on average). Long-chain n-alkanes ( n-C25-35) strongly dominated (80.1%) over middle-chain ( n-C21-24 = 18.9%) and short-chain ( n -C18-20 = 0.9%) n-alkanes.


2010 ◽  
Vol 75 (10) ◽  
pp. 1337-1346 ◽  
Author(s):  
Biljana Nikolic ◽  
Vele Tesevic ◽  
Iris Djordjevic ◽  
Milka Jadranin ◽  
Marina Todosijevic ◽  
...  

This is the first report of n-alkanes in needle epicuticular waxes of variety of Bosnian pine, Pinus heldreichii var. pancici. n-Hexane extracts of needle samples, originated from seven isolated localities in Serbia, were analysed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). The results exhibited nalkanes in epicuticular waxes ranging from C18 to C33. The most abundant alkanes were C27, C23, C25 and C29 (12.53 %, 12.46 %, 12.00 % and 10.38 % on average, respectively). The carbon preference index (CPItotal) of Pinus heldreichii var. pancici ranges from 1.1 to 2.1 (1.6 on average), while average chain length (ACLtotal) ranges from 25.0 to 25.8 (25.3 on average). A high level of individual quantitative variation in all of these hydrocarbon parameters was also obtained. The obtained results were compared with the bibliographic references for Pinus heldreichii var. leucodermis and other species of the Pinus genus.


2010 ◽  
Vol 65 (9-10) ◽  
pp. 533-536 ◽  
Author(s):  
Indranil Bhattacharjee ◽  
Anupam Ghosh ◽  
Nandita Chowdhury ◽  
Soroj Kumar Chatterjee ◽  
Goutam Chandra ◽  
...  

An n-hexane extract of fresh, mature leaves of Argemone mexicana (Papaveraceae), containing thin-layer epicuticular waxes, has been analysed for the first time by TLC, IR and GLC using standard hydrocarbons. Seventeen long-chain alkanes (n-C18 to n-C34) were identified and quantified. Nonacosane (n-C29) was established as the n-alkane with the highest amount, whilst octadecane (n-C18) was the least abundant component of the extracted wax fraction. The carbon preference index (CPI) calculated for the hydrocarbon sample with the chain lengths between C18 and C34 was 1.2469, showing an odd to even carbon number predominance.


2022 ◽  
Vol 308 (1) ◽  
Author(s):  
Sergio Contreras ◽  
Manlio Landahur ◽  
Karla García ◽  
Claudio Latorre ◽  
Mark Reyers ◽  
...  

AbstractIn the hyperarid Atacama Desert, water availability plays a crucial role in allowing plant survival. Along with scant rainfall, marine advective fog frequently occurs along the coastal escarpment fueling isolated mono-specific patches of Tillandsia vegetation. In this study, we investigate the lipid biomarker composition of the bromeliad Tillandsia landbeckii (CAM plant) to assess structural adaptations at the molecular level as a response to extremely arid conditions. We analyzed long-chain n-alkanes and fatty acids in living specimens (n = 59) collected from the main Tillandsia dune ecosystems across a 350 km coastal transect. We found that the leaf wax composition was dominated by n-alkanes with concentrations (total average 160.8 ± 91.4 µg/g) up to three times higher than fatty acids (66.7 ± 40.7 µg/g), likely as an adaptation to the hyperarid environment. Significant differences were found in leaf wax distribution (Average Chain Length [ACL] and Carbon Preference Index [CPI]) in the northern zone relative to the central and southern zones. We found strong negative correlations between fatty acid CPI and n-alkane ACL with precipitation and surface evaporation pointing at fine-scale adaptations to low moisture availability along the coastal transect. Moreover, our data indicate that the predominance of n-alkanes is reflecting the function of the wax in preventing water loss from the leaves. The hyperarid conditions and good preservation potential of both n-alkanes and fatty acids make them ideal tracers to study late Holocene climate change in the Atacama Desert.


2017 ◽  
Vol 88 (1) ◽  
pp. 60-70 ◽  
Author(s):  
Zhuolun Li ◽  
Youhong Gao ◽  
Lang Han

AbstractIn the hinterland of deserts, it is difficult to reconstruct paleovegetation using fossil pollen because of the low pollen concentration. Therefore, an efficient method is needed to reconstruct the paleovegetation of desert regions. In this study, 34 Holocene calcareous root tube (CRT) samples were collected from the Alashan Desert in northwest China, and lipid molecular proxies from CRTs were selected to address this deficiency. The results show that n-alkanes mainly maximized at C27, C29, and C16, and that the carbon preference index is close to 1. Thus, the sources of n-alkanes from CRTs were the roots of higher plants and microorganisms, and thus changes in n-alkanes from CRTs could reveal variations in vegetation cover. The n-alkane Cmax of long-chain n-alkanes (C>25) in CRTs, maximizing at C27, indicated that vegetation in the Alashan Desert was characterized by shrub vegetation during the Holocene. Changes in the ratio of (C27+C29)/(C31+C33) indicated that the biomass of shrub vegetation increased during the period 7–2 cal ka BP. Moreover, the relative concentration of short-chain to long-chain n-alkanes decreased from 7 to 2 cal ka BP, suggesting that the effective moisture decreased during that period.


2019 ◽  
Vol 157 (6) ◽  
pp. 979-988 ◽  
Author(s):  
Kenta Suzuki ◽  
Masanobu Yamamoto ◽  
Osamu Seki

AbstractVegetation changes in the Indus River basin within the past 10.8 million years were investigated based on the analysis of n-fatty acids and their carbon isotopes in sediments from IODP Site U1457 in the Laxmi Basin of the Arabian Sea. The δ13C of long-chain n-C32 fatty acid shifted from −34 to −22 ‰ from 10 to 6.3 Ma, while the δ13C of mid-chain n-C24 fatty acid was nearly constant at around −23 to −22 ‰ over the same period. This large difference in the δ13C values suggests that the mid-chain fatty acids reflect the contribution of aquatic vascular C3 plants. Before 6.3 Ma, the average chain length of n-fatty acids and the δ13C values of long-chain fatty acids were negatively correlated, suggesting that the δ13C values reflected the relative abundance of terrestrial C3 versus aquatic C3 plants in the Indus River basin and western India. After 5.8 Ma, the average chain length was variable, but the δ13C values remained nearly the same, suggesting that the δ13C values reflected heavier δ13C values of both aquatic C3 and C4 plants. A three-end-member model calculation suggests that terrestrial C3 plants were replaced by C4 plants in the Indus River basin and western India from 9.7 or 8.2 to 6.3 Ma. Aridification in those areas during the late Miocene period may have driven the replacement of terrestrial C3 plants by C4 plants. An episodic increase in the abundance of terrestrial plants around 8 Ma is attributed to elevated precipitation by regionally enhanced moisture transport.


2020 ◽  
Author(s):  
Achim Bechtel ◽  
Marek Widera ◽  
Michal Woszczyk

<p>Samples of detrital lignite have been collected for organic geochemical and carbon isotope analyses from the First Lusatian lignite seam at the Adamów, Jóźwin IIB and TomisÅ‚awice opencast mines, deposited after the last peak of the Mid-Miocene Climatic Optimum. The aim of the study is to improve the chemotaxonomic value of biomarkers by relating the results to existing paleobotanical data, and to gain information about the influencing factors on δ<sup>13</sup>C of lignite and lipids. Furthermore, biomarker and isotopic proxies are tested for their applicability in paleoclimate studies.</p><p>The relative abundances of mid-chain (C<sub>23</sub>, C<sub>25</sub>) <em>n</em>-alkanes and their 1–2‰ higher δ<sup>13</sup>C values compared to long-chain <em>n</em>-alkanes (C<sub>29</sub>, C<sub>31</sub>) argue for a minor contribution of macrophytes (graminoids, etc.) to peat formation, enhanced during periods of raised water level. The presence of ferruginol and dehydroferruginol testifies the contribution of taxodioid Cupressaceae. The abundances of pimarane-type diterpenoids and the presence of non-aromatic abietane-derivatives argue for the contribution of Pinaceae. Based on the presence of lupeol and lupane-type triterpenoids, an input of Betulaceae can be concluded. The contribution of further angiosperms cannot be specified based on the composition of pentacyclic triterpenoids. However, the results indicate mixed vegetation, and are in agreement with paleobotanical data highlighting abundant conifers of the Cupressaceae and Pinaceae families, as well as angiosperms of various families (e.g., <em>Nyssa, Quercus, Fagus</em>), including Betulaceae (e.g., <em>Alnus, Betula, Corylus</em>). Based on the relationship between the carbon preference index of <em>n</em>-alkanes and mean annual air temperatures, obtained from a global database of peatlands, an average temperature of 24.5 °C is obtained. This value is significantly higher as estimated from paleobotanical data (15.7–19.7 °C), probably due to the influence of changes in vegetation on carbon preference index.</p><p>The relative abundances of diterpenoids versus di- plus angiosperm-derived triterpenoids in detrital lignite samples revealed variable contributions of gymnosperms and angiosperms during the middle Miocene. Consistent with these results, a positive relationship exists between the di-/(di- + tri-) terpenoid biomarker ratios and δ<sup>13</sup>C of lignite samples, indicating the dominating role of varying gymnosperm/angiosperm contributions on the carbon isotopic composition of lignite. The C-isotope data of long-chain n-alkanes, diterpenoids, and angiosperm-derived triterpenoids co-vary within the profiles, arguing for an overall control of changes in δ<sup>13</sup>C of atmospheric CO<sub>2</sub> on δ<sup>13</sup>C of plant lipids. Fluctuations in δ<sup>13</sup>C of individual compounds may also be related to changes in carbon cycling within the peat, humidity and air temperature.</p>


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hidekazu Yoshida ◽  
Ryusei Kuma ◽  
Hitoshi Hasegawa ◽  
Nagayoshi Katsuta ◽  
Sin-iti Sirono ◽  
...  

AbstractIsolated silica concretions in calcareous sediments have unique shapes and distinct sharp boundaries and are considered to form by diagenesis of biogenic siliceous grains. However, the details and rates of syngenetic formation of these spherical concretions are still not fully clear. Here we present a model for concretion growth by diffusion, with chemical buffering involving decomposition of organic matter leading to a pH change in the pore-water and preservation of residual bitumen cores in the concretions. The model is compatible with some pervasive silica precipitation. Based on the observed elemental distributions, C, N, S, bulk carbon isotope and carbon preference index (CPI) measurements of the silica-enriched concretions, bitumen cores and surrounding calcareous rocks, the rate of diffusive concretion growth during early diagenesis is shown using a diffusion-growth diagram. This approach reveals that ellipsoidal SiO2 concretions with a diameter of a few cm formed rapidly and the precipitated silica preserved the bitumen cores. Our work provides a generalized chemical buffering model involving organic matter that can explain the rapid syngenetic growth of other types of silica accumulation in calcareous sediments.


2019 ◽  
Vol 20 (12) ◽  
pp. 2948 ◽  
Author(s):  
Werner E.G. Müller ◽  
Emad Tolba ◽  
Shunfeng Wang ◽  
Qiang Li ◽  
Meik Neufurth ◽  
...  

A new biomimetic strategy to im prove the self-healing properties of Portland cement is presented that is based on the application of the biogenic inorganic polymer polyphosphate (polyP), which is used as a cement admixture. The data show that synthetic linear polyp, with an average chain length of 40, as well as natural long-chain polyP isolated from soil bacteria, has the ability to support self-healing of this construction material. Furthermore, polyP, used as a water-soluble Na-salt, is subject to Na+/Ca2+ exchange by the Ca2+ from the cement, resulting in the formation of a water-rich coacervate when added to the cement surface, especially to the surface of bacteria-containing cement/concrete samples. The addition of polyP in low concentrations (<1% on weight basis for the solids) not only accelerated the hardening of cement/concrete but also the healing of microcracks present in the material. The results suggest that long-chain polyP is a promising additive that increases the self-healing capacity of cement by mimicking a bacteria-mediated natural mechanism.


Sign in / Sign up

Export Citation Format

Share Document