scholarly journals Neuroprotective Effect of Oxyresveratrol in Rotenone-Induced Parkinsonism Rats

2020 ◽  
Vol 15 (10) ◽  
pp. 1934578X2096619
Author(s):  
Ratchanee Rodsiri ◽  
Hattaya Benya-aphikul ◽  
Narudol Teerapattarakan ◽  
Oraphan Wanakhachornkrai ◽  
Weerawan Boonlert ◽  
...  

Oxyresveratrol, a polyphenolic compound, has been reported as having antioxidant and anti-inflammatory effects. This study determined the neuroprotective effects of oxyresveratrol, extracted from the heartwood of Artocarpus lakoocha Roxburgh (Moraceae), on parkinsonism induced by rotenone. Male Wistar rats were divided into control, rotenone (PD), and rotenone plus oxyresveratrol (OXY) groups. The OXY rats received oxyresveratrol (300 mg/kg orally) on days 1-20. Rotenone (3 mg/kg subcutaneously) was given to PD and OXY rats on days 15, 16, 18, and 20. Motor function was determined by the rotarod test. Brains were collected to analyze dopaminergic neurons, malondialdehyde (MDA) levels, and superoxide dismutase (SOD) and catalase activities. OXY rats exhibited a longer latency to fall than PD rats in the rotarod test ( P < 0.01) on day 16. The number of dopaminergic neurons in PD rats was lower than that in controls ( P < 0.01), while that of OXY rats was not different from controls. OXY rats showed a reduction in MDA levels ( P < 0.01) and increased catalase activity ( P < 0.05), while SOD activity was unaltered. The results suggest that oxyresveratrol pretreatment ameliorates motor impairment induced by rotenone and preserves dopaminergic neurons. The neuroprotective mechanism of oxyresveratrol is involved with its antioxidant properties.

Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2954
Author(s):  
Justyna Gorzkiewicz ◽  
Grzegorz Bartosz ◽  
Izabela Sadowska-Bartosz

Phytoestrogens are naturally occurring non-steroidal phenolic plant compounds. Their structure is similar to 17-β-estradiol, the main female sex hormone. This review offers a concise summary of the current literature on several potential health benefits of phytoestrogens, mainly their neuroprotective effect. Phytoestrogens lower the risk of menopausal symptoms and osteoporosis, as well as cardiovascular disease. They also reduce the risk of brain disease. The effects of phytoestrogens and their derivatives on cancer are mainly due to the inhibition of estrogen synthesis and metabolism, leading to antiangiogenic, antimetastatic, and epigenetic effects. The brain controls the secretion of estrogen (hypothalamus-pituitary-gonads axis). However, it has not been unequivocally established whether estrogen therapy has a neuroprotective effect on brain function. The neuroprotective effects of phytoestrogens seem to be related to both their antioxidant properties and interaction with the estrogen receptor. The possible effects of phytoestrogens on the thyroid cause some concern; nevertheless, generally, no serious side effects have been reported, and these compounds can be recommended as health-promoting food components or supplements.


2020 ◽  
Vol 8 (2) ◽  
pp. 74-82
Author(s):  
Forough Kajbaf ◽  
Shahrbanoo Oryan ◽  
Ramesh Ahmadi ◽  
Akram Eidi

Background: Growing evidence has shown that the apoptosis of cells plays an important role in the advancement of the Diabetic nephropathy (DN). Objectives: This study attempted to discover the therapeutic potential of Peganum harmala leaf extract in the apoptosis of diabetic kidney disease. Methods: In the present experimental research, 32 male Wistar rats were studied, and diabetes was induced by streptozotocin (STZ) (65 mg/kg). The animals were randomly divided into four groups (n=8, in each group) as follows: control, diabetic, control+leaf extract, diabetic+leaf extract. For our purposes, the methanolic extract of P. harmala leaves (150 mg/kg) was given by gavage for 28 days. Flow cytometry and real-time polymerase chain reaction (PCR) analyses were utilized to determine the percentages of apoptotic cells. Also, histological alterations and blood biochemical parameters were evaluated. Results: The P. harmala leaf extract has a high amount of flavonoids (25.84%), a lower percentage of alkaloids (0.14%), and some antioxidant properties. Serum urea (P<0.001) and apoptosis (P<0.05) significantly elevated in diabetic rats relative to the control ones. The mean of fasting blood creatinine, urea, and albumin level was not significantly changed in diabetic+leaf extract rats as compared to the diabetic ones. Histopathological results also displayed that diabetic complications in the kidney could not be improved following treatment by the leaf extract of P. harmala. In addition, the leaf extract could not significantly reduce the apoptosis and caspase-3 expression compared to diabetics in renal cells. Conclusion: Based on our findings, the leaf extract of P. harmala is unable to inhibit apoptosis in the diabetic kidney model.


2014 ◽  
Vol 66 (3) ◽  
pp. 1075-1081
Author(s):  
Ivan Simic ◽  
Violeta Iric-Cupic ◽  
Rada Vucic ◽  
Marina Petrovic ◽  
Violeta Mladenovic ◽  
...  

The aim of the present study was to evaluate the subchronic effects of 3,4-methylenedioxymethamphetamine on several oxidative stress markers: index of lipid peroxidation (ILP), superoxide dismutase (SOD) activity, superoxide radical (O2.-) levels, and reduced glutathione (GSH) levels in the frontal cortex, striatum and hippocampus of the rat. The study included 64 male Wistar rats (200-250g). The animals were treated per os with of 5, 10, or 20 mg/kg of 3,4-methylenedioxymethamphetamine (MDMA) every day for 15 days. The subchronic administration of MDMA resulted in an increase in ILP, SOD and O2.-, and a decrease in GSH, from which we conclude that oxidative stress was induced in rat brain.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Ratchaniporn Kongsui ◽  
Napatr Sriraksa ◽  
Sitthisak Thongrong

The systemic administration of lipopolysaccharide (LPS) has been recognized to induce neuroinflammation which plays a significant role in the pathogenesis of neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease. In this study, we aimed to determine the protective effect of Zingiber cassumunar (Z. cassumunar) or Phlai (in Thai) against LPS-induced neuronal cell loss and the upregulation of glial fibrillary acidic protein (GFAP) of astrocytes in the hippocampus. Adult male Wistar rats were orally administered with Z. cassumunar extract at various doses (50, 100, and 200 mg/kg body weight) for 14 days before a single injection of LPS (250 μg/kg/i.p.). The results indicated that LPS-treated animals exhibited neuronal cell loss and the activation of astrocytes and also increased proinflammatory cytokine interleukin- (IL-) 1β in the hippocampus. Pretreatment with Z. cassumunar markedly reduced neuronal cell loss in the hippocampus. In addition, Z. cassumunar extract at a dose of 200 mg/kg BW significantly suppressed the inflammatory response by reducing the expression of GFAP and IL-1ß in the hippocampus. Therefore, the results suggested that Z. cassumunar extract might be valuable as a neuroprotective agent in neuroinflammation-induced brain damage. However, further investigations are essential to validate the possible active ingredients and mechanisms of its neuroprotective effect.


Gene ◽  
2020 ◽  
Vol 742 ◽  
pp. 144601
Author(s):  
Nasrin Malboosi ◽  
Mohammad Nasehi ◽  
Mehrdad Hashemi ◽  
Salar Vaseghi ◽  
Mohammad-Reza Zarrindast

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Ying Chen ◽  
Haiyan Sun ◽  
Liyong Huang ◽  
Juxiang Li ◽  
Wenke Zhou ◽  
...  

Redox homeostasis has been implicated in subarachnoid hemorrhage (SAH). As a result, antioxidants and/or free radical scavengers have become an important therapeutic modality. Considering that radix trichosanthis (RT) saponins exhibited strong antioxidant ability bothin vivoandin vitro, the present study aimed to reveal whether the neuroprotective activities of RT saponins were mediated by p38/p53 signal pathway after SAH. An established SAH model was used and superoxide dismutase (SOD), malondialdehyde (MDA), induced nitric oxide synthase (iNOS), nitric oxide (NO), lactate dehydrogenase (LDH), p-p38, and p53 activation were detected after 48 h of SAH. The results showed that RT saponins inhibited iNOS expression to restore NO to basal level. Moreover, compared with Cu/Zn-SOD, RT saponins (2 mg/kg/d dosage) significantly increased Mn-SOD activity after SAH. Accompanied with lowered NO and elevated SOD, decreased p38 phosphorylation and p53 activities were observed, especially for RT saponins at 2 mg/kg/d dosage. In this setting, the neurological outcome was also improved with less neuronal cells damage after RT saponins pretreatment. Our findings demonstrated the beneficial effects of RT saponins in enhancing neuroprotective effects by deducing iNOS activity, normalizing SOD level, and inhibiting p-p38 and p53 expression, hence offering significant therapeutic implications for SAH.


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Kelly Rose Tavares Neves ◽  
Hélio Vitoriano Nobre ◽  
Luzia Kalyne A. M. Leal ◽  
Geanne Matos de Andrade ◽  
Gerly Anne de Castro Brito ◽  
...  

Pentoxifylline (PTX) is a phosphodiesterase inhibitor with anti-TNF-alpha activity, associated with its anti-inflammatory action. Considering Parkinson’s disease (PD) as a neuroinflammatory disorder, the objectives were to evaluate PTX neuroprotective properties, in a model of PD. Male Wistar rats, divided into sham-operated (SO), untreated 6-OHDA, and 6-OHDA treated with PTX (10, 25, and 50 mg/kg) groups, received a unilateral 6-OHDA injection, except the SO group administered with saline. Treatments started 24 h after surgery and continued for 15 days when the animals were submitted to apomorphine-induced rotations, open field, and forced swimming tests. At the next day, they were euthanized and their striata processed for neurochemical (DA and DOPAC determinations), histological, and immunohistochemical (Fluoro-Jade, TH, DAT, OX-42, TNF-alpha, COX-2, and iNOS) studies. PTX reversed the behavioral changes observed in the untreated 6-OHDA animals. Furthermore, PTX partially reversed the decrease in DA contents and improved neuronal viability. In addition, decreases in immunostaining for TH and dopamine transporter (DAT) were reversed. The untreated 6-OHDA group showed intense OX-42, TNF-alpha, COX-2, and iNOS immunoreactivities, which were attenuated by PTX. In conclusion, we demonstrated a neuroprotective effect of PTX, possibly related to its anti-inflammatory and antioxidant actions, indicating its potential as an adjunct treatment for PD.


2021 ◽  
Vol 15 (4) ◽  
pp. 249-256
Author(s):  
Taiwo Adekemi Abayomi ◽  
◽  
Olorunfemi Samuel Tokunbo ◽  
Moyinoluwa Ajayi ◽  
Olawale Ayobami Abayomi ◽  
...  

Background: Although ethanol exerts its neurotoxic effect on the brain through inflammatory and oxidative processes, the effect of Riboceine on the brain following ethanol neurotoxicity is yet to be elucidated. Therefore, this study was designed to evaluate the effects of riboceine on the cellular, behavioral, and molecular impairments induced by ethanol toxicity in rats. Methods: A total of 24 male Wistar rats weighing between 160-170 grams were used for the study, and were divided into four groups of six rats each. After completion of the administration of ethanol and riboceine, and testing for motor impairment, the rats were sacrificed. The cerebellum was excised and processed for oxidative stress analyses, based on oxidative stress markers and histological examinations. The immunohistochemical expression of astrocytes in the cerebellum was examined, using Glial Fibrillary Acidic Protein (GFAP) stain. Results: This study demonstrated that ethanol-induced neurotoxicity in the cerebellum, characterized by increased oxidative stress profile, astrocyte activation, and neuronal death in the cerebellum, especially the Purkinje layer. Necrosis, significant decrease in Superoxide Dismutase (SOD), Catalase (CAT) and Gluathione (GSH) activities (P<0.05) as well as astrogliosis was associated with ethanol treatment. However, riboceine was observed to significantly increase the cerebellar SOD, CAT and GSH activities with significantly reduced Malondialdehyde (MDA) levels (P<0.05). It also attenuated the histomorphological alteration of the cerebellum and reduced the cerebellar astrocytes activation following ethanol-induced neurotoxicity, thus leading to the attenuation of motor impairment. Conclusion: Riboceine attenuated motor impairment caused by chronic ethanol-induced neurotoxicity, suggestive of its anti-oxidative and anti-inflammatory properties.


Sign in / Sign up

Export Citation Format

Share Document