scholarly journals Three-Dimensional Bioprinting of Articular Cartilage: A Systematic Review

Cartilage ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 76-92 ◽  
Author(s):  
Yang Wu ◽  
Patrick Kennedy ◽  
Nicholas Bonazza ◽  
Yin Yu ◽  
Aman Dhawan ◽  
...  

Objective Treatment of chondral injury is clinically challenging. Available chondral repair/regeneration techniques have significant shortcomings. A viable and durable tissue engineering strategy for articular cartilage repair remains an unmet need. Our objective was to systematically evaluate the published data on bioprinted articular cartilage with regards to scaffold-based, scaffold-free and in situ cartilage bioprinting. Design We performed a systematic review of studies using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. PubMed and ScienceDirect databases were searched and all articles evaluating the use of 3-dimensional (3D) bioprinting in articular cartilage were included. Inclusion criteria included studies written in or translated to English, published in a peer-reviewed journal, and specifically discussing bioinks and/or bioprinting of living cells related to articular cartilage applications. Review papers, articles in a foreign language, and studies not involving bioprinting of living cells related to articular cartilage applications were excluded. Results Twenty-seven studies for articular cartilage bioprinting were identified that met inclusion and exclusion criteria. The technologies, materials, cell types used in these studies, and the biological and physical properties of the created constructs have been demonstrated. Conclusion These 27 studies have demonstrated 3D bioprinting of articular cartilage to be a tissue engineering strategy that has tremendous potential translational value. The unique abilities of the varied techniques allow replication of mechanical properties and advances toward zonal differentiation. This review demonstrates that bioprinting has great capacity for clinical cartilage reconstruction and future in vivo implantation.

2019 ◽  
Vol 10 ◽  
pp. 204173141988470 ◽  
Author(s):  
Gabriel Alexander Salg ◽  
Nathalia A Giese ◽  
Miriam Schenk ◽  
Felix J Hüttner ◽  
Klaus Felix ◽  
...  

A bioartificial endocrine pancreas is proposed as a future alternative to current treatment options. Patients with insulin-secretion deficiency might benefit. This is the first systematic review that provides an overview of scaffold materials and techniques for insulin-secreting cells or cells to be differentiated into insulin-secreting cells. An electronic literature survey was conducted in PubMed/MEDLINE and Web of Science, limited to the past 10 years. A total of 197 articles investigating 60 different materials met the inclusion criteria. The extracted data on materials, cell types, study design, and transplantation sites were plotted into two evidence gap maps. Integral parts of the tissue engineering network such as fabrication technique, extracellular matrix, vascularization, immunoprotection, suitable transplantation sites, and the use of stem cells are highlighted. This systematic review provides an evidence-based structure for future studies. Accumulating evidence shows that scaffold-based tissue engineering can enhance the viability and function or differentiation of insulin-secreting cells both in vitro and in vivo.


2021 ◽  
Vol 8 (3) ◽  
pp. 39
Author(s):  
Britani N. Blackstone ◽  
Summer C. Gallentine ◽  
Heather M. Powell

Collagen is a key component of the extracellular matrix (ECM) in organs and tissues throughout the body and is used for many tissue engineering applications. Electrospinning of collagen can produce scaffolds in a wide variety of shapes, fiber diameters and porosities to match that of the native ECM. This systematic review aims to pool data from available manuscripts on electrospun collagen and tissue engineering to provide insight into the connection between source material, solvent, crosslinking method and functional outcomes. D-banding was most often observed in electrospun collagen formed using collagen type I isolated from calfskin, often isolated within the laboratory, with short solution solubilization times. All physical and chemical methods of crosslinking utilized imparted resistance to degradation and increased strength. Cytotoxicity was observed at high concentrations of crosslinking agents and when abbreviated rinsing protocols were utilized. Collagen and collagen-based scaffolds were capable of forming engineered tissues in vitro and in vivo with high similarity to the native structures.


Author(s):  
Shivangi Agarwal ◽  
Yashwanth R Sudhini ◽  
Onur K Polat ◽  
Jochen Reiser ◽  
Mehmet Mete Altintas

Kidneys, one of the vital organs in our body, are responsible for maintaining whole-body homeostasis. The complexity of renal function (e.g., filtration, reabsorption, fluid and electrolyte regulation, urine production) demands diversity not only at the level of cell types but also in their overall distribution and structural framework within the kidney. To gain an in-depth molecular-level understanding of the renal system, it is imperative to discern the components of kidney and the types of cells residing in each of the sub-regions. Recent developments in labeling, tracing, and imaging techniques enabled us to mark, monitor and identify these cells in vivo with high efficiency in a minimally invasive manner. In this review, we have summarized different cell types, specific markers that are uniquely associated with those cell types, and their distribution in kidney, which altogether make kidneys so special and different. Cellular sorting based on the presence of certain proteins on the cell surface allowed for assignment of multiple markers for each cell type. However, different studies using different techniques have found contradictions in the cell-type specific markers. Thus, the term "cell marker" might be imprecise and sub-optimal, leading to uncertainty when interpreting the data. Therefore, we strongly believe that there is an unmet need to define the best cell markers for a cell type. Although, the compendium of renal-selective marker proteins presented in this review is a resource that may be useful to the researchers, we acknowledge that the list may not be necessarily exhaustive.


Author(s):  
Jing Jing Yang ◽  
Jian Fang Liu ◽  
Takayuki Kurokawa ◽  
Nobuto Kitamura ◽  
Kazunori Yasuda ◽  
...  

Hydrogels are used as scaffolds for tissue engineering in vitro & in vivo because their three-dimensional network structure and viscoelasticity are similar to those of the macromolecular-based extracellular matrix (ECM) in living tissue. Especially, the synthetic hydrogels with controllable and reproducible properties were used as scaffolds to study the behaviors of cells in vitro and implanted test in vivo. In this review, two different structurally designed hydrogels, single-network (SN) hydrogels and double-network (DN) hydrogels, were used as scaffolds. The behavior of two cell types, anchorage-dependent cells and anchorage-independent cells, and the differentiation behaviors of embryoid bodies (EBs) were investigated on these hydrogels. Furthermore, the behavior of chondrocytes on DN hydrogels in vitro and the spontaneous cartilage regeneration induced by DN hydrogels in vivo was examined.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Francesco Perdisa ◽  
Natalia Gostyńska ◽  
Alice Roffi ◽  
Giuseppe Filardo ◽  
Maurilio Marcacci ◽  
...  

Among the current therapeutic approaches for the regeneration of damaged articular cartilage, none has yet proven to offer results comparable to those of native hyaline cartilage. Recently, it has been claimed that the use of mesenchymal stem cells (MSCs) provides greater regenerative potential than differentiated cells, such as chondrocytes. Among the different kinds of MSCs available, adipose-derived mesenchymal stem cells (ADSCs) are emerging due to their abundancy and easiness to harvest. However, their mechanism of action and potential for cartilage regeneration are still under investigation, and many other aspects still need to be clarified. The aim of this systematic review is to give an overview ofin vivostudies dealing with ADSCs, by summarizing the main evidence for the treatment of cartilage disease of the knee.


2009 ◽  
Vol 21 (1) ◽  
pp. 237 ◽  
Author(s):  
D. Kim ◽  
A. J. Maki ◽  
H.-J. Kong ◽  
E. Monaco ◽  
M. Bionaz ◽  
...  

Adipose tissue presents an appealing alternative to bone marrow as a source of mesenchymal stem cells (MSC). However, in order to enhance cell proliferation and differentiation, 3-dimensional (3-D) culture may be required. A 3-D culture has benefits due to its more in vivo-like environment. Further, to form a functional tissue, a scaffold material is required to ensure proper shape and allow for efficient delivery of nutrients and growth factors. Alginate, a resorbable hydrogel, is a potential injectable scaffold for fat and bone tissue engineering due to its high biocompatibility, gelation with calcium and slow dissolution in a physiologic environment. In the present study, we examined the viability, gene expression and morphology of MSC, isolated from porcine adipose (ADSC) and bone marrow (BMSC), during osteogenic and adipogenic differentiation in a 3D alginate hydrogel environment for 0, 7 and 14 days (d). ADSC and BMSC were infused into alginate hydrogels, which polymerized upon the addition of Ca+2 ions. Both stem cell types were differentiated into osteoblasts using 0.1 μm dexamethasone, 10 mm beta glycerophosphate and 50 μm ascorbic acid, whereas adipocytes were differentiated using 10 μm insulin, 1 μm dexamethasone, and 0.5 mm IBMX. Osteogenic differentiation was confirmed using alkaline phosphatase, Von Kossa, and alizarin red S staining and adipogenic differentiation was confirmed using Oil Red O. Cell viability and proliferation was quantified using the MTT assay. Gene expression was measured using qPCR. The morphology of ADSC and BMSC differentiated toward osteogenic lineages changed with both cell types forming osteogenic nodules over time. The nodules formed by ADSC were larger in diameter than those formed by BMSC. Unlike the osteogenic cells that formed nodules, the ADSC and BMSC differentiated into adipogenic cells showed no significant changes in cell size or aggregation. Gene expression results indicated increased PPARG expression in BMSC with time whereas ADSC showed a peak of expression on day 7 and then decreased. ADSC showed increased (14-fold) PPRG expression when compared with BMSC. ADSC had 160-fold less expression of ALP than BMSC. BMSC showed a 16-fold higher expression level of BGLAP than ADSC. ADSC showed a 15.8% higher expression than BMSC for COL1a1. Both ADSC and BMSC showed similar trends SPARC expression, but BMSC had a 12-fold higher expression of SPP1 than ADSC. In summary, both types of mesenchymal stem cells successfully differentiated into both lineages and maintained viability in the hydrogel over time. In conclusion, alginate is a viable scaffold material for the differentiation of mesenchymal stem cells for tissue engineering applications. These results allow for future studies using the pig as an in vivo fat and bone tissue engineering model. This research was supported by the Illinois Regenerative Medicine Institute.


2018 ◽  
Vol 20 (2) ◽  
pp. 259-264
Author(s):  
A V Kosulin ◽  
L N Beldiman ◽  
S V Kromsky ◽  
A A Kokorina ◽  
E V Mikhailova ◽  
...  

Short bowel syndrome is an important clinical problem characterized by a high incidence of serious complications, deaths and socioeconomic consequences. Parenteral nutrition provides only a temporary solution without reducing the risk of complications. This applies equally to surgical treatment, in particular to small intestine transplantation and related concomitant interventions, which only facilitate the adaptation of the intestine to new conditions. Potential approaches have been analyzed in the treatment of the syndrome of the small intestine, which can be offered by dynamically developing tissue engineering. Various types of carriers and cell types that are used in experiments for obtaining tissue engineering designs of the intestine are discussed. A wide range of variants of such constructions is analyzed that can lead to obtaining an organ prosthesis with a cellular organization and mechanical stability similar to those of the native small intestine, which will ensure the necessary biocompatibility. It is established that one of the optimal carriers for today are extracellular matrices obtained by decellularization of the native small intestine. This process allows to preserve the microarchitecture of the small intestine, which greatly facilitates the process of filling the matrix with cells both in vitro and in vivo. It has also been established that mesenchymal stromal multipotent cells and organoid units obtained from the tissue of the native small intestine are particularly prominent among the most promising participants in the cellular ensemble.


2018 ◽  
Vol 5 (1) ◽  
Author(s):  
Nicanor Moldovan ◽  
Leni Maldovan ◽  
Michael Raghunath

The overarching principle of three-dimensional (3D) bioprinting is the placing of cells or cell clusters in the 3D space to generate a cohesive tissue microarchitecture that comes close to in vivo characteristics. To achieve this goal, several technical solutions are available, generating considerable combinatorial bandwidth: (i) Support structures are generated first, and cells are seeded subsequently; (ii) alternatively, cells are delivered in a printing medium, so-called “bioink,” that contains them during the printing process and ensures shape fidelity of the generated structure; and (iii) a “scaffold-free” version of bioprinting, where only cells are used and the extracellular matrix is produced by the cells themselves, also recently entered a phase of accelerated development and successful applications. However, the scaffold-free approaches may still benefit from secondary incorporation of scaffolding materials, thus expanding their versatility. Reversibly, the bioink-based bioprinting could also be improved by adopting some of the principles and practices of scaffold-free biofabrication. Collectively, we anticipate that combinations of these complementary methods in a “hybrid” approach, rather than their development in separate technological niches, will largely increase their efficiency and applicability in tissue engineering.


2021 ◽  
Vol 8 ◽  
Author(s):  
Lu Wang ◽  
Vahid Serpooshan ◽  
Jianyi Zhang

Tissue engineering combines principles of engineering and biology to generate living tissue equivalents for drug testing, disease modeling, and regenerative medicine. As techniques for reprogramming human somatic cells into induced pluripotent stem cells (iPSCs) and subsequently differentiating them into cardiomyocytes and other cardiac cells have become increasingly efficient, progress toward the development of engineered human cardiac muscle patch (hCMP) and heart tissue analogs has accelerated. A few pilot clinical studies in patients with post-infarction LV remodeling have been already approved. Conventional methods for hCMP fabrication include suspending cells within scaffolds, consisting of biocompatible materials, or growing two-dimensional sheets that can be stacked to form multilayered constructs. More recently, advanced technologies, such as micropatterning and three-dimensional bioprinting, have enabled fabrication of hCMP architectures at unprecedented spatiotemporal resolution. However, the studies working on various hCMP-based strategies for in vivo tissue repair face several major obstacles, including the inadequate scalability for clinical applications, poor integration and engraftment rate, and the lack of functional vasculature. Here, we review many of the recent advancements and key concerns in cardiac tissue engineering, focusing primarily on the production of hCMPs at clinical/industrial scales that are suitable for administration to patients with myocardial disease. The wide variety of cardiac cell types and sources that are applicable to hCMP biomanufacturing are elaborated. Finally, some of the key challenges remaining in the field and potential future directions to address these obstacles are discussed.


2015 ◽  
Vol 95 (1) ◽  
pp. 106-113 ◽  
Author(s):  
Volker Seifarth ◽  
Matthias Gossmann ◽  
Heinz Peter Janke ◽  
Joachim O. Grosse ◽  
Christoph Becker ◽  
...  

Regenerative medicine, tissue engineering and biomedical research give hope to many patients who need bio-implants. Tissue engineering applications have already been developed based on bioreactors. Physiological ureter implants, however, do not still function sufficiently, as they represent tubular hollow structures with very specific cellular structures and alignments consisting of several cell types. The aim of this study was to a develop a new bioreactor system based on seamless, collagenous, tubular OPTIMAIX 3D prototype sponge as scaffold material for ex-vivo culturing of a tissue engineered ureter replacement for future urological applications. Particular emphasis was given to a great extent to mimic the physiological environment similar to the in vivo situation of a ureter. NIH-3T3 fibroblasts, C2C12, Urotsa and primary genitourinary tract cells were applied as co-cultures on the scaffold and the penetration of cells into the collagenous material was followed. By the end of this study, the bioreactor was functioning, physiological parameter as temperature and pH and the newly developed BIOREACTOR system is applicable to tubular scaffold materials with different lengths and diameters. The automatized incubation system worked reliably. The tubular OPTIMAIX 3D sponge was a suitable scaffold material for tissue engineering purposes and co-cultivation procedures.


Sign in / Sign up

Export Citation Format

Share Document