scholarly journals Plasma ST6GAL1 regulates IgG sialylation to control IgA nephropathy progression

2021 ◽  
Vol 12 ◽  
pp. 204062232110486
Author(s):  
Youxia Liu ◽  
Huyan Yu ◽  
Sijing Wu ◽  
Xia Yang ◽  
Congcong Cao ◽  
...  

Background: Our previous study revealed that plasma levels of a-2,6-sialyltransferase 1 (ST6GAL1) were increased in patients with IgA nephropathy (IgAN). ST6GAL1 catalyzes terminal sialylation of IgG to shift the antibody effector function to the anti-inflammatory pattern. However, the role of plasma ST6GAL1 in the progression of IgAN and underlying mechanisms are still unknown. Methods: A total of 180 IgAN patients were included. The kidney outcomes were defined as the eGFR decline or proteinuria remission. Peripheral blood mononuclear cells (PBMCs) were either stimulated with purified sialylated IgG (SA-IgG) or with non-sialylated IgG (NSA-IgG) from IgAN patients to detect the levels of interleukin (IL)-6 and tumor necrosis factor-α (TNF-α) in supernatant. Results: Compared with the lower ST6GAL1 (reference), the risk of eGFR decline decreased for the higher ST6GAL1 group after adjustment for baseline eGFR, systolic blood pressure (SBP), and proteinuria. The results showed that patients with higher ST6GAL1 levels had a higher rate of proteinuria remission. ST6GAL1, expressed as a continuous variable, was a protective factor for eGFR decline and proteinuria remission. An in vitro study showed that the administration of recombinant ST6GAL1 (rST6GAL1) decreased the levels of IL-6 and TNF-α in PBMCs. Furthermore, the administration of rST6GAL1 resulted in the enrichment of SA-IgG in a concentration-dependent manner. In addition, as compared to control, purified SA-IgG-treated PBMCs showed a significant decrease in the expression of IL-6 and TNF-α. Conclusion: Our study indicated that elevated ST6GAL1 was associated with a slower progression of IgAN, which may play a protective effect by increasing IgG sialylation to inhibit the production of proinflammatory cytokines in PBMCs.

2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Youxia Liu ◽  
Hongfen Li ◽  
Huyan Yu ◽  
Fanghao Wang ◽  
Junya Jia ◽  
...  

Abstract Background The addition of sialic acid alters IgG from a pro-inflammatory state to an anti-inflammatory state. However, there is a lack of research on the changes of IgG sialylation in IgA nephropathy (IgAN). Methods This study included a total of 184 IgAN patients. The sialylated IgG (SA-IgG), IgG-galactose-deficient IgA1 complex (IgG-Gd-IgA1-IC), IL-6, TNF-α, and TGF-β were detected using commercial ELISA kits. SA-IgG, non-sialylated IgG (NSA-IgG), sialylated IgG-IgA1 complex (SA-IgG-IgA1), and non-sialylated IgG-IgA1 complex (NSA-IgG-IgA1) were purified from IgAN patients and healthy controls (HCs). Results The mean SA-IgG levels in plasma and B lymphocytes in IgAN patients were significantly higher than those of healthy controls. A positive correlation was found between SA-IgG levels in plasma and B lymphocytes. In vitro, the results showed that the release of IgG-Gd-IgA1-IC was significantly decreased in peripheral blood mononuclear cells (PBMCs) cultured with SA-IgG from both IgAN patients and healthy controls. The proliferation ability and the release of IL-6, TNF-α, and TGF-β in human mesangial cells (HMCs) were measured after stimulating with SA-IgG-IgA1-IC and NSA-IgG-IgA1-IC. The mesangial cell proliferation levels induced by NSA-IgG-IgA1-IC derived from IgAN patients were significantly higher than those caused by SA-IgG-IgA1-IC derived from IgAN patients and healthy controls. Compared with NSA-IgG-IgA1 from healthy controls, IgAN-NSA-IgG-IgA1 could significantly upregulate the expression of IL-6 and TNF-α in mesangial cells. The data showed that there weren’t any significant differences in the levels of IL-6, TNF-α, and TGF-β when treated with IgAN-SA-IgG-IgA1 and HC-NSA-IgG-IgA1. Conclusions The present study demonstrated that the sialylation of IgG increased in patients with IgA nephropathy. It exerted an inhibitory effect on the formation of Gd-IgA1-containing immune complexes in PBMCs and the proliferation and inflammation activation in mesangial cells.


2003 ◽  
Vol 47 (12) ◽  
pp. 3704-3707 ◽  
Author(s):  
Jung-Hyun Choi ◽  
Min-Jin Song ◽  
Seung-Han Kim ◽  
Su-Mi Choi ◽  
Dong-Gun Lee ◽  
...  

ABSTRACT The effects of moxifloxacin, a new methoxyfluoroquinolone, on the production of proinflammatory cytokines from human peripheral blood mononuclear cells (PBMCs) were evaluated. Moxifloxacin inhibited the production of tumor necrosis factor alpha (TNF-α) and/or interleukin-6 (IL-6) by PBMCs stimulated with lipopolysaccharide (LPS), lipoteichoic acid (LTA), and heat-killed bacteria in a concentration-dependent manner without cytotoxic effects. The addition of moxifloxacin reduced the population of cells positive for CD-14 and TNF-α and for CD-14 and IL-6 among the LPS- or LTA-stimulated PBMCs. By Western blot analysis, moxifloxacin pretreatment reduced the degradation of IκBα in LPS-stimulated PBMCs. In conclusion, moxifloxacin could interfere with NF-κB activation by inhibiting the degradation of IκBα and reduce the levels of production of proinflammatory cytokines.


Nutrients ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 123
Author(s):  
Natalia K. Kordulewska ◽  
Justyna Topa ◽  
Małgorzata Tańska ◽  
Anna Cieślińska ◽  
Ewa Fiedorowicz ◽  
...  

Lipopolysaccharydes (LPS) are responsible for the intestinal inflammatory reaction, as they may disrupt tight junctions and induce cytokines (CKs) secretion. Osthole has a wide spectrum of pharmacological effects, thus its anti-inflammatory potential in the LPS-treated Caco-2 cell line as well as in Caco-2/THP-1 and Caco-2/macrophages co-cultures was investigated. In brief, Caco-2 cells and co-cultures were incubated with LPS to induce an inflammatory reaction, after which osthole (150–450 ng/mL) was applied to reduce this effect. After 24 h, the level of secreted CKs and changes in gene expression were examined. LPS significantly increased the levels of IL-1β, -6, -8, and TNF-α, while osthole reduced this effect in a concentration-dependent manner, with the most significant decrease when a 450 ng/mL dose was applied (p < 0.0001). A similar trend was observed in changes in gene expression, with the significant osthole efficiency at a concentration of 450 ng/μL for IL1R1 and COX-2 (p < 0.01) and 300 ng/μL for NF-κB (p < 0.001). Osthole increased Caco-2 monolayer permeability, thus if it would ever be considered as a potential drug for minimizing intestinal inflammatory symptoms, its safety should be confirmed in extended in vitro and in vivo studies.


2018 ◽  
Vol 64 (12) ◽  
pp. 937-944 ◽  
Author(s):  
Zhimin Duan ◽  
Qing Chen ◽  
Rong Zeng ◽  
Leilei Du ◽  
Caixia Liu ◽  
...  

The prevalence of Candida infection induced by non-albicans Candida (NAC) species is increasing. However, as a common NAC species, C. tropicalis has received much less study in terms of host immunity than C. albicans has. In this study, we evaluated the pro-inflammatory cytokine responses evoked by C. tropicalis and determined whether dectin-1 and downstream NF-κB and mitogen-activated protein kinases (MAPKs) signaling pathways played roles in inflammation in human peripheral blood mononuclear cells (PBMCs) and THP-1 macrophage-like cells. Exposure of PBMCs and THP-1 macrophage-like cells to C. tropicalis led to the enhanced gene expression and secretion of TNF-α and IL-6 in a time- and dose-dependent manner. THP-1 macrophage-like cells being challenged by C. tropicalis resulted in the activation of the NF-κB, p38, and ERK1/2 MAPK signaling pathways. We also found that the expression of dectin-1 was increased with C. tropicalis treatment. These data reveal that dectin-1 may play a role in sensing the inflammation response induced by C. tropicalis and that NF-κB and MAPK are involved in the downstream signaling pathways in macrophages.


Cytokine ◽  
2016 ◽  
Vol 88 ◽  
pp. 184-192 ◽  
Author(s):  
Hélio Galdino ◽  
Rodrigo Saar Gomes ◽  
Jessica Cristina dos Santos ◽  
Lívia Lara Pessoni ◽  
Anetícia Eduarda Maldaner ◽  
...  

2009 ◽  
Vol 77 (9) ◽  
pp. 3826-3837 ◽  
Author(s):  
Anna Martner ◽  
Susann Skovbjerg ◽  
James C. Paton ◽  
Agnes E. Wold

ABSTRACT Streptococcus pneumoniae is a major pathogen in humans. The pathogenicity of this organism is related to its many virulence factors, the most important of which is the thick pneumococcal capsule that minimizes phagocytosis. Another virulence-associated trait is the tendency of this bacterium to undergo autolysis in stationary phase through activation of the cell wall-bound amidase LytA, which breaks down peptidoglycan. The exact function of autolysis in pneumococcal pathogenesis is, however, unclear. Here, we show the selective and specific inefficiency of wild-type S. pneumoniae for inducing production of phagocyte-activating cytokines in human peripheral blood mononuclear cells (PBMC). Indeed, clinical pneumococcal strains induced production of 30-fold less tumor necrosis factor (TNF), 15-fold less gamma interferon (IFN-γ), and only negligible amounts of interleukin-12 (IL-12) compared with other closely related Streptococcus species, whereas the levels of induction of IL-6, IL-8, and IL-10 production were similar. If pneumococcal LytA was inactivated by mutation or by culture in a medium containing excess choline, the pneumococci induced production of significantly more TNF, IFN-γ, and IL-12 in PBMC, whereas the production of IL-6, IL-8, and IL-10 was unaffected. Further, adding autolyzed pneumococci to intact bacteria inhibited production of TNF, IFN-γ, and IL-12 in a dose-dependent manner but did not inhibit production of IL-6, IL-8, and IL-10 in response to the intact bacteria. Fragments from autolyzed bacteria inhibited phagocytosis of intact bacteria and reduced the in vitro elimination of pneumococci from human blood. Our results suggest that fragments generated by autolysis of bacteria with reduced viability interfere with phagocyte-mediated elimination of live pneumococci.


2019 ◽  
Vol 26 (1) ◽  
Author(s):  
Ming-Han Chen ◽  
Ming-Ting Huang ◽  
Wen-Kuang Yu ◽  
Shinn-Shing Lee ◽  
Jia-Horng Wang ◽  
...  

Abstract Background Dectin-2, which is a C-type lectin, interacts with the house dust mite (HDM) Dermatophagoides pteronyssinus allergen. This study aimed to investigate whether Dectin-2 blockade by antagonistic monoclonal antibodies (MoAbs) attenuates HDM-induced allergic responses. Methods Two anti-Dectin-2 MoAbs were generated and validated for specific binding to Dectin-2 Fc fusion protein (Dectin-2.Fc) and inhibition of Dectin-2.Fc/HDM interaction. Patients with asthma exhibiting high titers of anti-D. pteronyssinus IgE were enrolled. Peripheral blood mononuclear cells with depleted CD14+ monocytes were obtained from these patients and co-cultured with autologous monocyte-derived conventional dendritic cells in the presence of D. pteronyssinus or its group 2 allergens (Der p 2). Interleukin (IL)-5 and IL-13 levels in the culture supernatants were determined using ELISA in the presence or absence of anti-Dectin-2 MoAbs. Results Two MoAbs, 6A4G7 and 17A1D10, showed specific binding to recombinant Dectin-2.Fc and inhibited HDM binding to Dectin-2.Fc. Both anti-Dectin-2 MoAbs inhibited IL-5 and IL-13 production in co-cultures with Der p 2 stimulation in a dose-dependent manner. 6A4G7 and 17A1D10 (3 μg/mL) significantly inhibited Der p 2-induced (3 μg/mL) IL-5 production by 69.7 and 86.4% and IL-13 production by 84.0 and 81.4%, respectively. Moreover, this inhibitory effect of the two MoAbs remained significant in the presence of D. pteronyssinus. Conclusions Anti-Dectin-2 MoAbs significantly inhibited HDM-induced allergic responses in vitro and therefore have the potential to become therapeutic agents in mite-induced allergic diseases.


2019 ◽  
Vol 21 (1) ◽  
pp. 189 ◽  
Author(s):  
Fabio Sallustio ◽  
Claudia Curci ◽  
Vincenzo Di Leo ◽  
Anna Gallone ◽  
Francesco Pesce ◽  
...  

IgA Nephropathy (IgAN) is a primary glomerulonephritis problem worldwide that develops mainly in the 2nd and 3rd decade of life and reaches end-stage kidney disease after 20 years from the biopsy-proven diagnosis, implying a great socio-economic burden. IgAN may occur in a sporadic or familial form. Studies on familial IgAN have shown that 66% of asymptomatic relatives carry immunological defects such as high IgA serum levels, abnormal spontaneous in vitro production of IgA from peripheral blood mononuclear cells (PBMCs), high serum levels of aberrantly glycosylated IgA1, and an altered PBMC cytokine production profile. Recent findings led us to focus our attention on a new perspective to study the pathogenesis of this disease, and new studies showed the involvement of factors driven by environment, lifestyle or diet that could affect the disease. In this review, we describe the results of studies carried out in IgAN patients derived from genomic and epigenomic studies. Moreover, we discuss the role of the microbiome in the disease. Finally, we suggest a new vision to consider IgA Nephropathy as a disease that is not disconnected from the environment in which we live but influenced, in addition to the genetic background, also by other environmental and behavioral factors that could be useful for developing precision nephrology and personalized therapy.


2005 ◽  
Vol 98 (6) ◽  
pp. 2045-2055 ◽  
Author(s):  
T. H. Elsasser ◽  
J. W. Blum ◽  
S. Kahl

A subpopulation of calves, herein termed “hyperresponders” (HPR), was identified and defined by the patterns of plasma TNF-α concentrations that developed following two challenges with endotoxin (LPS, 0.8 μg Escherichia coli 055:B5 LPS/kg0.75live body wt) separated by 5 days. The principle characteristic of HPR calves was a failure to develop tolerance to repeated LPS challenge that was evident in the magnitude of the TNF-α concentrations and prolonged severity of pathological sequellae. Whereas calves failing to develop LPS tolerance were identified on the basis of their excessive in vivo plasma TNF-α concentration responses, in vitro TNF-α responses of peripheral blood mononuclear cells isolated from each calf and challenged with LPS or PMA did not correlate or predict the magnitude of in vivo plasma TNF response of the calf. Intentional breeding to obtain calves from bulls and/or cows documented as HPR resulted in offspring displaying the HPR character when similar progeny calves were tested with LPS in vivo, with extensive controls in place to account for sources of variability in the general TNF-α response to LPS that might compromise interpretation of the data. Feed intake, clinical serology and hematology profiles, and acute-phase protein responses of HPR calves following LPS were significantly different from those of calves displaying tolerance. These results suggest that the pattern of plasma TNF-α changes that evolve from a low-level double LPS challenge effectively reveal the presence of a genetic potential for animals to display excessive or prolonged pathological response to LPS-related stress and compromised prognosis for recovery.


2010 ◽  
Vol 19 (4) ◽  
pp. 369-386 ◽  
Author(s):  
M. Bouchentouf ◽  
P. Paradis ◽  
K. A. Forner ◽  
J. Cuerquis ◽  
M. N. Boivin ◽  
...  

In this study, we have investigated the hypothesis that previously reported beneficial effect of peripheral blood mononuclear cells cultured under angiogenic conditions on cardiovascular function following ischemia is not limited to EPCs but also to monocytes contained therein. We first purified and analyzed the phenotype and secretome of human and murine blood monocytes cultured under angiogenic conditions (named MDs for monocyte derivatives) and tested their effect in a mouse model of myocardial infarction (MI). FACS analysis of MDs shows that these cells express mature endothelial cell markers and that their proliferative capacity is virtually absent, consistent with their end-differentiated monocytic ontogeny. MDs secreted significant levels of HGF, IGF-1, MCP-1, and sTNFR-1 relative to their monocyte precursors. MDs were unable to form vascular networks in vitro when cultured on matrix coated flasks. Treatment of murine HL-1 cardiomyocyte cell line with MD-conditioned medium reduced their death induced by TNF-α, staurosporine, and oxidative stress, and this effect was dependent upon MD-derived sTNFR-1, HGF, and IGF-1. We further demonstrate that MD secretome promoted endothelial cell proliferation and capacity to form vessels in vitro and this was dependent upon MD-derived MCP-1, HGF, and IGF-1. Echocardiography analysis showed that MD myocardial implantation improved left ventricle fractional shortening of mouse hearts following MI and was associated with reduced myocardial fibrosis and enhancement of angiogenesis. Transplanted MDs and their secretome participate in preserving functional myocardium after ischemic insult and attenuate pathological remodeling.


Sign in / Sign up

Export Citation Format

Share Document