scholarly journals Understanding microstructure of the brain by comparison of neurite orientation dispersion and density imaging (NODDI) with transparent mouse brain

2017 ◽  
Vol 6 (4) ◽  
pp. 205846011770381 ◽  
Author(s):  
Kanako Sato ◽  
Aurelien Kerever ◽  
Koji Kamagata ◽  
Kohei Tsuruta ◽  
Ryusuke Irie ◽  
...  

Background Neurite orientation dispersion and density imaging (NODDI) is a diffusion magnetic resonance imaging (MRI) technique with the potential to visualize the microstructure of the brain. Revolutionary histological methods to render the mouse brain transparent have recently been developed, but verification of NODDI by these methods has not been reported. Purpose To confirm the concordance of NODDI with histology in terms of density and orientation dispersion of neurites of the brain. Material and Methods Whole brain diffusion MRI of a thy-1 yellow fluorescent protein mouse was acquired with a 7-T MRI scanner, after which transparent brain sections were created from the same mouse. NODDI parameters calculated from the MR images, including the intracellular volume fraction (Vic) and the orientation dispersion index (ODI), were compared with histological findings. Neurite density, Vic, and ODI were compared between areas of the anterior commissure and the hippocampus containing crossing fibers (crossing areas) and parallel fibers (parallel areas), and the correlation between fiber density and Vic was assessed. Results The ODI was significantly higher in the crossing area compared to the parallel area in both the anterior commissure and the hippocampus ( P = 0.0247, P = 0.00022, respectively). Neurite density showed a similar tendency, but was significantly different only in the hippocampus ( P = 7.91E−07). There was no significant correlation between neurite density and Vic. Conclusion NODDI was verified by histology for quantification of the orientation dispersion of neurites. These results indicate that the ODI is a suitable index for understanding the microstructure of the brain in vivo.

2010 ◽  
Vol 298 (4) ◽  
pp. E807-E814 ◽  
Author(s):  
Lara R. Nyman ◽  
Eric Ford ◽  
Alvin C. Powers ◽  
David W. Piston

Pancreatic islets are highly vascularized and arranged so that regions containing β-cells are distinct from those containing other cell types. Although islet blood flow has been studied extensively, little is known about the dynamics of islet blood flow during hypoglycemia or hyperglycemia. To investigate changes in islet blood flow as a function of blood glucose level, we clamped blood glucose sequentially at hyperglycemic (∼300 mg/dl or 16.8 mM) and hypoglycemic (∼50 mg/dl or 2.8 mM) levels while simultaneously imaging intraislet blood flow in mouse models that express green fluorescent protein in the β-cells or yellow fluorescent protein in the α-cells. Using line scanning confocal microscopy, in vivo blood flow was assayed after intravenous injection of fluorescent dextran or sulforhodamine-labeled red blood cells. Regardless of the sequence of hypoglycemia and hyperglycemia, islet blood flow is faster during hyperglycemia, and apparent blood volume is greater during hyperglycemia than during hypoglycemia. However, there is no change in the order of perfusion of different islet endocrine cell types in hypoglycemia compared with hyperglycemia, with the islet core of β-cells usually perfused first. In contrast to the results in islets, there was no significant difference in flow rate in the exocrine pancreas during hyperglycemia compared with hypoglycemia. These results indicate that glucose differentially regulates blood flow in the pancreatic islet vasculature independently of blood flow in the rest of the pancreas.


2008 ◽  
Vol 294 (2) ◽  
pp. H699-H707 ◽  
Author(s):  
Ellen Steward Pentz ◽  
Maria Luisa S. Sequeira Lopez ◽  
Magali Cordaillat ◽  
R. Ariel Gomez

The renin-angiotensin system (RAS) regulates blood pressure and fluid-electrolyte homeostasis. A key step in the RAS cascade is the regulation of renin synthesis and release by the kidney. We and others have shown that a major mechanism to control renin availability is the regulation of the number of cells capable of making renin. The kidney possesses a pool of cells, mainly in its vasculature but also in the glomeruli, capable of switching from smooth muscle to endocrine renin-producing cells when homeostasis is threatened. The molecular mechanisms governing the ability of these cells to turn the renin phenotype on and off have been very difficult to study in vivo. We, therefore, developed an in vitro model in which cells of the renin lineage are labeled with cyan fluorescent protein and cells actively making renin mRNA are labeled with yellow fluorescent protein. The model allowed us to determine that it is possible to culture cells of the renin lineage for numerous passages and that the memory to express the renin gene is maintained in culture and can be reenacted by cAMP and chromatin remodeling (histone H4 acetylation) at the cAMP-responsive element in the renin gene.


2021 ◽  
Author(s):  
Giovanni Gallo ◽  
Ioannis Mougiakos ◽  
Mauricio Bianco ◽  
Miriam Carbonaro ◽  
Andrea Carpentieri ◽  
...  

Arsenic detoxification systems can be found in a wide range of organisms, from bacteria to man. In a previous study, we discovered an arsenic-responsive transcriptional regulator in the thermophilic bacterium Thermus thermophilus HB27 (TtSmtB). Here, we characterize the arsenic resistance system of T. thermophilus in more detail. We employed TtSmtB-based pull-down assays with protein extracts from cultures treated with arsenate and arsenite to obtain an S-adenosylmethionine (SAM)-dependent arsenite methyltransferase (TtArsM). In vivo and in vitro analyses were performed to shed light on this new component of the arsenic resistance network and its peculiar catalytic mechanism. Heterologous expression of TtarsM in Escherichia coli resulted in arsenite detoxification at mesophilic temperatures. Although TtArsM does not contain a canonical arsenite binding site, the purified protein does catalyse SAM-dependent arsenite methylation. In addition, in vitro analyses confirmed the unique interaction between TtArsM and TtSmtB. Next, a highly efficient ThermoCas9-based genome-editing tool was developed to delete the TtArsM-encoding gene on the T. thermophilus genome, and to confirm its involvement in the arsenite detoxification system. Finally, the TtarsX efflux pump gene in the T. thermophilus ΔTtarsM genome was substituted by a gene, encoding a stabilised yellow fluorescent protein (sYFP), to create a sensitive genome-based bioreporter system for the detection of arsenic ions.


1977 ◽  
Vol 55 (4) ◽  
pp. 934-942 ◽  
Author(s):  
Thomas W. Dolby ◽  
Lewis J. Kleinsmith

The experiments presented in this paper examine the mechanisms underlying the ability of cannabinoids to alter the in vivo levels of cyclic adenosine 3′,5′-monophosphate (cyclic AMP) in mouse brain. It was found that changes in cyclic AMP levels are a composite result of direct actions of cannabinoids on adenylate cyclase (EC 4.6.1.1) activity and indirect actions involving the potentiation or inhibition of biogenic amine induced activity of adenylate cyclase. Furthermore, the long-term intraperitoneal administration of 1-(−)-Δ-tetrahydrocannabinol to mice produced a form of phosphodiesterase (EC 3.1.4.17) in the brain whose activity is not stimulated by Ca2+, although its basal specific activity is similar to that of control animals. In vitro, the presence of the cannabinoids caused no significant changes in activity of brain PDE at the concentrations tested. Some correlations are presented which imply that many of the observed behavioral and physiological actions of the cannabinoids in mammalian organisms may be mediated via cyclic AMP mechanisms.


Open Biology ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 200010
Author(s):  
Navaneethan Palanisamy ◽  
Mehmet Ali Öztürk ◽  
Emir Bora Akmeriç ◽  
Barbara Di Ventura

The Escherichia coli Min system plays an important role in the proper placement of the septum ring at mid-cell during cell division. MinE forms a pole-to-pole spatial oscillator with the membrane-bound ATPase MinD, resulting in MinD concentration being the lowest at mid-cell. MinC, the direct inhibitor of the septum initiator protein FtsZ, forms a complex with MinD at the membrane, mirroring its polar gradients. Therefore, MinC-mediated FtsZ inhibition occurs away from mid-cell. Min oscillations are often studied in living cells by time-lapse microscopy using fluorescently labelled Min proteins. Here, we show that, despite permitting oscillations to occur in a range of protein concentrations, the enhanced yellow fluorescent protein (eYFP) C-terminally fused to MinE impairs its function. Combining in vivo , in vitro and in silico approaches, we demonstrate that eYFP compromises the ability of MinE to displace MinC from MinD, to stimulate MinD ATPase activity and to directly bind to the membrane. Moreover, we reveal that MinE-eYFP is prone to aggregation. In silico analyses predict that other fluorescent proteins are also likely to compromise several functionalities of MinE, suggesting that the results presented here are not specific to eYFP.


2004 ◽  
Vol 382 (2) ◽  
pp. 695-702 ◽  
Author(s):  
Yu HO ◽  
Huei-Ru LO ◽  
Tzu-Ching LEE ◽  
Carol P. Y. WU ◽  
Yu-Chan CHAO

The BEVS (baculovirus expression vector system) is widely used for the production of proteins. However, engineered proteins frequently experience the problem of degradation, possibly due to the lytic nature of the conventional BEVS (herein referred to as L-BEVS). In the present study, a non-lytic BEVS (N-BEVS) was established by random mutagenesis of viral genomes. At 5 days post-infection, N-BEVS showed only 7% cell lysis, whereas L-BEVS showed 60% lysis of cells. The quality of protein expressed in both N- and L-BEVSs was examined further using a novel FRET (fluorescence resonance energy transfer)-based assay. To achieve this, we constructed a concatenated fusion protein comprising LUC (luciferase) sandwiched between EYFP (enhanced yellow fluorescent protein) and ECFP (enhanced cyan fluorescent protein). The distance separating the two fluorescent proteins in the fusion protein EYFP–LUC–ECFP (designated hereafter as the YLC construct) governs energy transfer between EYFP and ECFP. FRET efficiency thus reflects the compactness of LUC, indicating its folding status. We found more efficient FRET in N-BEVS compared with that obtained in L-BEVS, suggesting that more tightly folded LUC was produced in N-BEVS. YLC expression was also analysed by Western blotting, revealing significantly less protein degradation in N-BEVS than in L-BEVS, in which extensive degradation was observed. This FRET-based in vivo folding technology showed that YLC produced in N-BEVS is more compact, correlating with improved resistance to degradation. N-BEVS is thus a convenient alternative for L-BEVS for the production of proteins vulnerable to degradation using baculoviruses.


2006 ◽  
Vol 17 (2) ◽  
pp. 907-916 ◽  
Author(s):  
Anne Straube ◽  
Gerd Hause ◽  
Gero Fink ◽  
Gero Steinberg

Conventional kinesin is a ubiquitous organelle transporter that moves cargo toward the plus-ends of microtubules. In addition, several in vitro studies indicated a role of conventional kinesin in cross-bridging and sliding microtubules, but in vivo evidence for such a role is missing. In this study, we show that conventional kinesin mediates microtubule-microtubule interactions in the model fungus Ustilago maydis. Live cell imaging and ultrastructural analysis of various mutants in Kin1 revealed that this kinesin-1 motor is required for efficient microtubule bundling and participates in microtubule bending in vivo. High levels of Kin1 led to increased microtubule bending, whereas a rigor-mutation in the motor head suppressed all microtubule motility and promoted strong microtubule bundling, indicating that kinesin can form cross-bridges between microtubules in living cells. This effect required a conserved region in the C terminus of Kin1, which was shown to bind microtubules in vitro. In addition, a fusion protein of yellow fluorescent protein and the Kin1tail localized to microtubule bundles, further supporting the idea that a conserved microtubule binding activity in the tail of conventional kinesins mediates microtubule-microtubule interactions in vivo.


2009 ◽  
Vol 55 (2) ◽  
pp. 179-188 ◽  
Author(s):  
Haiming Li ◽  
Raymond J. Turner

The catalytic subunit of many Escherichia coli redox enzymes bares a twin-arginine translocation (Tat)-dependent signal peptide in its precursor, which directs the redox enzyme complex to this Sec-independent pathway. NarG of the E. coli nitrate reductase NarGHI complex possesses a vestige twin-arginine motif at its N terminus. During the cofactor insertion, and assembly and folding of the NarG–NarH complex, a chaperone protein, NarJ, is thought to interact with the N terminus and an unknown second site of NarG. Our previous in vitro study provided evidence that NarJ’s role shows some Tat system dependence. In this work, we investigated the associations of NarJ with a peptide of the first 50 residues of NarG (NarG50) in living cells. Two approaches were used: the Förster resonance energy transfer (FRET) based on yellow fluorescent protein – cyan fluorescent protein (YFP–CFP) and the bimolecular fluorescence complementation (BiFC). Compared with the wild-type (WT) E. coli cotransformants expressing both NarJ–YFP and NarG50–CFP, tat gene mutants gave an apparent FRET efficiency (Eapp) that was on the order of 25%–40% lower. These experiments implied a Tat system dependency of the in vivo associations between NarJ and the NarG50 peptide. In the BiFC assay, a 4-fold lower specific fluorescence intensity was observed for the E. coli WT cotransformants expressing both NarJ–Yc and NarG50–Yn than for its tat mutants, again suggesting a Tat dependence of the interactions. Fluorescence microscopy showed a “dot”/unipolar distribution of the reassembled YFP–NarJ:NarG50 both in WT and tat mutants, demonstrating a distinct localization of the interaction. Thus, although the degree of the interaction shows Tat dependence, the cell localization is less so. Taken together, these data further support that NarJ’s activity on NarG may be assisted by the Tat system.


2007 ◽  
Vol 364-366 ◽  
pp. 1123-1127
Author(s):  
Shi Hua Yang ◽  
Ye Qi Lao

The highlight of photoacosutic imaging (PAI) is a method that combines ultrasonic resolution with high contrast due to light absorption. Photoacoustic signals carry the information of the light absorption distribution of biological tissue, which is often related to its character of structure, physiological and pathological changes because of different physiology conditions in response to different light absorption coefficients. A non-invasive PAI system was developed and successfully acquired in vivo images of mouse brain. Based on the intrinsic PA signals from the brain, the vascular network and the detailed structures of the mouse cerebral cortex were clearly visualized. The ability of PAI monitoring of cerebral hemodynamics was also demonstrated by mapping of the mouse superficial cortex with and without drug stimulation. The extracted PA signals intensity profiles obviously testified that the cerebral blood flow (CBF) in the mouse brain was changed under the stimulation of acetazolamide (ACZ). The experimental results suggest that PAI can provide non-invasive images of blood flow changes, and has the potential for brain function detection.


2012 ◽  
Vol 116 (3) ◽  
pp. 498-512 ◽  
Author(s):  
Bhagat Singh ◽  
Qing-Gui Xu ◽  
Colin K. Franz ◽  
Rumi Zhang ◽  
Colin Dalton ◽  
...  

Object Regeneration of peripheral nerves is remarkably restrained across transection injuries, limiting recovery of function. Strategies to reverse this common and unfortunate outcome are limited. Remarkably, however, new evidence suggests that a brief extracellular electrical stimulation (ES), delivered at the time of injury, improves the regrowth of motor and sensory axons. Methods In this work, the authors explored and tested this ES paradigm, which was applied proximal to transected sciatic nerves in mice, and identified several novel and compelling impacts of the approach. Using thy-1 yellow fluorescent protein mice with fluorescent axons that allow serial in vivo tracking of regeneration, the morphological, electrophysiological, and behavioral indices of nerve regrowth were measured. Results The authors show that ES is associated with a 30%–50% improvement in several indices of regeneration: regrowth of axons and their partnered Schwann cells across transection sites, maturation of regenerated fibers in gaps spanning transection zones, and entry of axons into their muscle and cutaneous target zones. In parallel studies, the authors analyzed adult sensory neurons and their response to extracellular ES while plated on a novel microelectrode array construct designed to deliver the identical ES paradigm used in vivo. The ES accelerated neurite outgrowth, supporting the concept of a neuron-autonomous mechanism of action. Conclusions Taken together, these results support a robust role for brief ES following peripheral nerve injuries in promoting regeneration. Electrical stimulation has a wider repertoire of impact than previously recognized, and its impact in vitro supports the hypothesis that a neuron-specific reprogrammed injury response is recruited by the ES protocol.


Sign in / Sign up

Export Citation Format

Share Document