scholarly journals The Peroneus Brevis and Plantar Fascia Insertions Are Related to Proximal Fifth Metatarsal Fractures

2017 ◽  
Vol 2 (3) ◽  
pp. 2473011417S0001
Author(s):  
Ali Hosseini ◽  
Pim Van Dijk ◽  
Sofie Breuking ◽  
Bryan Vopat ◽  
Daniel Guss ◽  
...  

Category: Midfoot/Forefoot Introduction/Purpose: Proximal fifth metatarsal fractures (PFMF) are among the most common fractures in the foot and can be categorized into three fracture zones [1]. To investigate the fracture mechanism of PFMF in different zones, a better understanding of the anatomy of the bone and its surrounding soft tissues is required. Both the plantar fascia (PF) and the peroneus brevis (PB) tendon insertions are at the base of the fifth metatarsal, and may contribute to the pathophysiology of PFMF. However, the role of the PB and PF insertions in the pathogenesis of PFMF remains unclear. The purpose of this study was to accurately define the footprint of the PB and PF insertions of the base of the 5th metatarsal in relation to the different zones of PFMF. Methods: 21 cadaveric fifth metatarsal bones were harvested from cadaveric feet. All bones were freed of any remaining soft tissue adherence, except for the PB and the PF insertions. Three reference screws with a diameter of 1 mm were placed and secured on each bone with 2 screws distally and 1 screw proximally for registration. All bones were CT scanned to create a 3D bone reconstruction. Next, the insertions of the PB and PF and the reference screws of each bone were digitized and then mapped to its corresponding 3D bone model. In order to describe the three different fracture zones of the 5th metatarsal, an established coordinate system was made for each bone to simulate separate fracture zones (Figure a) based on Lawrence guideline [1]. The shape, location and surface areas of both insertions and their relation to the different fractures zones were determined (Figure b). Results: The insertion of the PB was oval shaped and located on the dorsal side of the base, with a mean surface area of 88.1 ± 46.4 mm2. The PF was oval shaped and situated around the tip of tuberosity, with a mean surface area of 150.7±53.5 mm2. The PB insertion was present in zone 1 fractures in 100% (21/21) of the 5th metatarsal models and 29% (6/21) of the models for zone 2 fractures. The PF insertion was involved in 100% (21/21) of the 5th metatarsal models for zone 1 fractures and 43% (9/21) of the models for zone 2 fractures. Conclusion: Results of this study demonstrate that the insertion of both the PB and PF are involved in all zone 1 PFMF and a significant percentage of zone 2 PFMF. The location of tendon insertions affect the forces exerted on the bone, which may indicate a relation of the insertions of both the PB and the PF with the fracture mechanism of many zone 1 and 2 PFMF. Moreover, in the treatment of these fractures, care should be taken to maintain or restore the anatomy of these insertions to maximize functional outcomes.

Author(s):  
M. Marko ◽  
A. Leith ◽  
D. Parsons

The use of serial sections and computer-based 3-D reconstruction techniques affords an opportunity not only to visualize the shape and distribution of the structures being studied, but also to determine their volumes and surface areas. Up until now, this has been done using serial ultrathin sections.The serial-section approach differs from the stereo logical methods of Weibel in that it is based on the Information from a set of single, complete cells (or organelles) rather than on a random 2-dimensional sampling of a population of cells. Because of this, it can more easily provide absolute values of volume and surface area, especially for highly-complex structures. It also allows study of individual variation among the cells, and study of structures which occur only infrequently.We have developed a system for 3-D reconstruction of objects from stereo-pair electron micrographs of thick specimens.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jeongpil Kim ◽  
Jeong-Hyun Eum ◽  
Junhyeok Kang ◽  
Ohchan Kwon ◽  
Hansung Kim ◽  
...  

AbstractHerein, we introduce a simple method to prepare hierarchical graphene with a tunable pore structure by activating graphene oxide (GO) with a two-step thermal annealing process. First, GO was treated at 600 °C by rapid thermal annealing in air, followed by subsequent thermal annealing in N2. The prepared graphene powder comprised abundant slit nanopores and micropores, showing a large specific surface area of 653.2 m2/g with a microporous surface area of 367.2 m2/g under optimized conditions. The pore structure was easily tunable by controlling the oxidation degree of GO and by the second annealing process. When the graphene powder was used as the supercapacitor electrode, a specific capacitance of 372.1 F/g was achieved at 0.5 A/g in 1 M H2SO4 electrolyte, which is a significantly enhanced value compared to that obtained using activated carbon and commercial reduced GO. The performance of the supercapacitor was highly stable, showing 103.8% retention of specific capacitance after 10,000 cycles at 10 A/g. The influence of pore structure on the supercapacitor performance was systematically investigated by varying the ratio of micro- and external surface areas of graphene.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Johann Zwirner ◽  
Aqeeda Singh ◽  
Francesca Templer ◽  
Benjamin Ondruschka ◽  
Niels Hammer

AbstractIt is unclear whether plantar and posterior heel spurs are truly pathological findings and whether they are stimulated by traction or compression forces. Previous histological investigations focused on either one of the two spur locations, thereby potentially overlooking common features that refer to a uniform developmental mechanism. In this study, 19 feet from 16 cadavers were X-ray scanned to preselect calcanei with either plantar or posterior spurs. Subsequently, seven plantar and posterior spurs were histologically assessed. Five spur-free Achilles tendon and three plantar fascia entheses served as controls. Plantar spurs were located either intra- or supra-fascial whereas all Achilles spurs were intra-fascial. Both spur types consistently presented a trabecular architecture without a particular pattern, fibrocartilage at the tendinous entheses and the orientation of the spur tips was in line with the course of the attached soft tissues. Spurs of both entities revealed tapered areas close to their bases with bulky tips. Achilles and plantar heel spurs seem to be non-pathological calcaneal exostoses, which are likely results of traction forces. Both spur types revealed commonalities such as their trabecular architecture or the tip direction in relation to the attached soft tissues. Morphologically, heel spurs seem poorly adapted to compressive loads.


2021 ◽  
Author(s):  
Atal Ahmadzai

Alerted by increasing water insecurity and energy demand, countries, mainly in the Global South, are building dams of unprecedented magnitude. Hundreds of large dams (≥ 100 metres) have been constructed since 2000, with hundreds more under construction. Analyses of the physical attributes of these dams present a concerning image. While they create expansive reservoirs with large surface areas, they have inefficient surface area-to-volume ratios ('S2VR'). Their unprecedented size and the reservoirs’ expansive surface area, indicate severe environmental costs, mainly through ecological disturbances to the (riverine) aquatic ecosystems; and greenhouse gas emissions (GHG). Other ecological costs due to the larger S2VR include a high evaporation rate and compromised biodiversity of a wider area, both up- and downstream. The safety and environmental aspects of these large dams should be robustly scrutinised.


2018 ◽  
Vol 8 (9) ◽  
pp. 1596 ◽  
Author(s):  
Jung Park ◽  
Gi Lee ◽  
Sang Hwang ◽  
Ji Kim ◽  
Bum Hong ◽  
...  

In this study, a feasible experiment on adsorbed natural gas (ANG) was performed using activated carbons (ACs) with high surface areas. Upgraded ACs were prepared using chemical activation with potassium hydroxide, and were then applied as adsorbents for methane (CH4) storage. This study had three principal objectives: (i) upgrade ACs with high surface areas; (ii) evaluate the factors regulating CH4 adsorption capacity; and (iii) assess discharge conditions for the delivery of CH4. The results showed that upgraded ACs with surface areas of 3052 m2/g had the highest CH4 storage capacity (0.32 g-CH4/g-ACs at 3.5 MPa), which was over two times higher than the surface area and storage capacity of low-grade ACs (surface area = 1152 m2/g, 0.10 g-CH4/g-ACs). Among the factors such as surface area, packing density, and heat of adsorption in the ANG system, the heat of adsorption played an important role in controlling CH4 adsorption. The released heat also affected the CH4 storage and enhanced available applications. During the discharge of gas from the ANG system, the residual amount of CH4 increased as the temperature decreased. The amount of delivered gas was confirmed using different evacuation flow rates at 0.4 MPa, and the highest efficiency of delivery was 98% at 0.1 L/min. The results of this research strongly suggested that the heat of adsorption should be controlled by both recharging and discharging processes to prevent rapid temperature change in the adsorbent bed.


1968 ◽  
Vol 11 (4) ◽  
pp. 805-810 ◽  
Author(s):  
E. R. Nilo

Twelve young adult men with normal hearing and no history of ear disease took part in our study of the relation of vibrator surface area and static application force to the vibrator-to-head coupling. For vibrator surface areas of 1.125, 2.25, and 4.5 cm 2 coupled to the forehead under static forces of 150, 300, and 600 gm, monaural thresholds of bone-conduction hearing were determined at frequencies 250, 500, 1000, and 2000 Hz. With surface area constant, threshold improvement was frequency dependent. It decreased with increasing frequency until at 2000 Hz it was minimal. In contrast to this, with force constant, the influence of surface area was observed to begin at 2000 Hz. Preliminary study suggests this influence would extend to 4000 Hz. In view of the respective influence of application force and surface area to bone-conduction hearing, equating vibrator-to-head coupling on the basis of pressure (force per unit area), when there are two or more vibrators, may not represent an adequate control.


2016 ◽  
Vol 40 (2) ◽  
pp. E12 ◽  
Author(s):  
Mitchell Hardenbrook ◽  
Sergio Lombardo ◽  
Miles C. Wilson ◽  
Albert E. Telfeian

OBJECTIVE The authors describe a cadaveric analysis to determine the ideal dimensions and trajectory for considering endoscopic transforaminal interbody implantation. METHODS The soft tissues of 8 human cadavers were removed from L-1 to the sacrum, exposing the posterior bony elements. Facetectomies were performed bilaterally at each lumbar level with resection of the pars interarticularis, revealing the pedicles, nerve roots, and interbody disc space. Each level was digitally photographed with a marker for scale and evaluated with digital analysis software. The traversing and exiting nerve roots and pedicle margins were identified, and the distances between these structures and their relationships to the surrounding structures were documented. RESULTS The dimensions of 2 areas were measured: the working triangle and safe zone. The working triangle is the triangle between the exiting and traversing nerve roots above the superior margin of the inferior pedicle. The safe zone is the trapezoid bounded by the widths of the superior and inferior pedicles between the exiting and traversing nerve roots. The mean surface area for the working triangle was 1.83 cm2, with L5–S1 having the largest area at 2.19 cm2. The mean surface area of the safe zone was 1.19 cm2, with L5–S1 having the largest area at 1.26 cm2. At the medial border of the pedicle extending superiorly, there were no nerve structures within 1.19 cm at any level. On the lateral border of the pedicle, the exiting nerve root was closer superiorly, with the closest being 0.3 cm. CONCLUSIONS The working triangle is a relatively large area. The safe zone, just superior to the pedicle, is free of nerve structures. By utilizing the superior border of the pedicle, the disc space can be accessed within this safe zone without risk of injury to the nerves. A thorough understanding of foraminal anatomy is fundamental for considering how to safely access the disc space, thereby utilizing less invasive endoscopic techniques, and is an important first step in considering what shapes and sizes of interbody implants and retractors are feasible for use in the foramen.


2021 ◽  
Vol 9 (4) ◽  
pp. 90-95
Author(s):  
A. A. Воробьев ◽  
Yu. A. Makedonova ◽  
A. O. Solov'ev ◽  
D. Yu. D'yachenko ◽  
E. G. Bagrii ◽  
...  

Relevance. The currently available methods for measuring anatomical areas with irregular relief do not claim to be accurate and easy to use.The aim of the study was to develop a method for measuring the surface area of an anatomical region (substructure) with an irregular relief.Material and methods. There was developed an option to measure the surface area of an anatomical region (substructure) with a complex relief in patients with pathology of the maxillofacial region and perineum using realistic 3D modeling.Results. The principle of the developed method is that, firstly, it is necessary to determine the patient's "zone of interest", where it is planned to measure the surface area; after that, digital photographs of the defined area are taken to obtain a sufficient number of images from the maximum number of available angles using a template with predefined dimensions for scaling. Then the obtained photographs are processed in the program for the 3D model reconstruction, and a realistic 3D model that correctly repeats the relief of the "zone of interest" and guarantees measurements of the surface area taking into account all its individual features is obtained. The method has been tested in obstetrics and gynecology, dentistry, maxillofacial surgery.Conclusion. This technique has been proved to be simple, accessible, fast, highly accurate in measuring the area of anatomical regions with complex relief. At the same time, the investigated object does not need fixation and prolonged immobility. A digital optical device is used contactless, the fact being significant in situations where it is necessary to comply with the rules of asepsis and antisepsis.


2011 ◽  
Vol 53 (3) ◽  
pp. 717-726 ◽  
Author(s):  
BAOCHENG ZHU ◽  
NI LI ◽  
JIAZU ZHOU

AbstractIn this paper, we establish a number of Lp-affine isoperimetric inequalities for Lp-geominimal surface area. In particular, we obtain a Blaschke–Santaló type inequality and a cyclic inequality between different Lp-geominimal surface areas of a convex body.


1968 ◽  
Vol 46 (10) ◽  
pp. 1695-1701 ◽  
Author(s):  
D. J. C. Yates

The determination of the surface areas of zeolites is discussed. It is shown that it is incorrect to use the multilayer isotherm method of Brunauer, Emmett, and Teller for solids where only little more than one monolayer can be adsorbed, in cavities little larger than the adsorbed molecules. The areas of such materials can, however, be determined from the beginning of the linear portion of their isotherms (point B). In addition, X-ray spectra can provide an independent method of measuring changes in the surface areas of zeolites.


Sign in / Sign up

Export Citation Format

Share Document