scholarly journals Optimal use of meningococcal serogroup B vaccines: moving beyond outbreak control

2018 ◽  
Vol 6 (3) ◽  
pp. 49-60 ◽  
Author(s):  
Paul Balmer ◽  
Laura J. York

Neisseria meningitidis is a major cause of meningitis and septicemia globally. Vaccines directed against N. meningitidis serogroup B (MenB) have been used to control sporadic and sustained disease in industrialized and non-industrialized countries. Early outer membrane vesicle (OMV) vaccines effectively reduced MenB disease in countries such as Norway, New Zealand, and France; however, these vaccines were highly specific for their targeted outbreak strain, did not elicit a durable immune response, and were ineffective for widespread use due to the diversity of MenB-disease-causing isolates. Recently developed recombinant protein-based MenB vaccines that target conserved surface proteins have the potential to induce a broader immune response against the diversity of disease-causing strains. Given the deleterious consequences and sporadic nature of MenB disease, the use of optimal vaccination strategies is crucial for prevention. Reactive vaccination strategies used in the past have significant limitations, including delayed implementation, substantial use of resources, and time constraints. The broad coverage potential of recombinant protein-based MenB vaccines suggests that routine use could result in a reduced burden of disease. Despite this, routine use of MenB vaccines is currently limited in practice.

2020 ◽  
Author(s):  
David V. McLeod ◽  
Lindi M. Wahl ◽  
Nicole Mideo

AbstractAlthough vaccination has been remarkably effective against some pathogens, for others, rapid antigenic evolution implies that vaccination confers only weak and/or short-lived protection. Consequently, considerable effort has been invested in developing more evolutionarily robust vaccines, either by targeting highly conserved components of the pathogen (universal vaccines) or by including multiple immunological targets within a single vaccine (multi-epitope vaccines). An unexplored third possibility is to vaccinate individuals with one of a number of qualitatively different vaccines, creating a ‘mosaic’ of individual immunity in the population. Here we explore whether? a mosaic vaccination strategy can deliver superior epidemiological outcomes to ‘conventional’ vaccination, in which all individuals receive the same vaccine. We suppose vac-cine doses can be distributed both between distinct vaccine ‘targets’ (e.g., different surface proteins against which an immune response can be generated) and across immunologically-distinct variants at these targets (e.g., strains); the pathogen can undergo antigenic evolution at both targets. Using simple mathematical models, we show that conventional vaccination is often outperformed by mosaic vaccination strategies, that is, mosaic vaccination often leads to fewer infected individuals over the course of the epidemic.


2011 ◽  
Vol 39 (1) ◽  
pp. 360-364 ◽  
Author(s):  
Karin Hoffmann-Sommergruber ◽  
Katharina Paschinger ◽  
Iain B.H. Wilson

Both helminth infections and contact with allergens result in development of a Th2 type of immune response in the affected individual. In this context, the hygiene hypothesis suggests that reduced prevalence of parasitic infections and successful vaccination strategies are causative for an increase of allergies in industrialized countries. It is therefore of interest to study glycans and their role as immunogenic structures in both parasitic infections and allergies. In the present paper we review information on the different types of glycan structure present in proteins from plant and animal food, insect venom and helminth parasites, and their role as diagnostic markers. In addition, the application of these glycan structures as immunomodulators in novel immunotherapeutic strategies is discussed.


2019 ◽  
Vol 1 (7) ◽  
pp. 29-32 ◽  
Author(s):  
L. S. Kruglova ◽  
E. M. Gensler

Over the past decades, the first breakthrough milestone in the treatment of severe forms of atopic dermatitis (AD) has been targeted therapy aimed at inhibiting IL-4 and IL-13. This was made possible thanks to advances in the understanding of the pathogenesis of AD, the driver of which is the Th2-type immune response, which also underlies such manifestations of atopy as bronchial asthma, allergic rhinitis, and polynosis. In the case of the Th2-type immune response, cytokines IL-4 and IL-13 are secreted, which are the main promoters of the inflammatory response in AD. Inhibition of IL-4 and IL-13 leads to the prevention of inflammation and is an effective approach to therapy. The use of therapy aimed at inhibition of cytokines allows you to effectively cope with the manifestations of severe and moderately severe blood pressure.


2020 ◽  
pp. 49-57
Author(s):  
S. V. Orlova ◽  
E. A. Nikitina ◽  
L. I. Karushina ◽  
Yu. A. Pigaryova ◽  
O. E. Pronina

Vitamin A (retinol) is one of the key elements for regulating the immune response and controls the division and differentiation of epithelial cells of the mucous membranes of the bronchopulmonary system, gastrointestinal tract, urinary tract, eyes, etc. Its significance in the context of the COVID‑19 pandemic is difficult to overestimate. However, a number of studies conducted in the past have associated the additional intake of vitamin A with an increased risk of developing cancer, as a result of which vitamin A was practically excluded from therapeutic practice in developed countries. Our review highlights the role of vitamin A in maintaining human health and the latest data on its effect on the development mechanisms of somatic pathology.


2021 ◽  
Vol 8 ◽  
pp. 204993612110320
Author(s):  
Robert Rosolanka ◽  
Andres F. Henao-Martinez ◽  
Larissa Pisney ◽  
Carlos Franco-Paredes ◽  
Martin Krsak

Deeper understanding of the spread, morbidity, fatality, and development of immune response associated with coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2, is necessary in order to establish an appropriate epidemiological and clinical response. Exposure control represents a key part of the combat against COVID-19, as the effectiveness of current therapeutic options remains partial. Since the preventive measures have not been sufficiently able to slow down this pandemic, in this article we explore some of the pertinent knowledge gaps, while overall looking to effective vaccination strategies as a way out. Early on, such strategies may need to rely on counting the convalescents as protected in order to speed up the immunization of the whole population.


Pathogens ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 281
Author(s):  
Cassidy Anderson ◽  
Catherine A. Brissette

Lyme disease (LD) has become the most common vector-borne illness in the northern hemisphere. The causative agent, Borrelia burgdorferi sensu lato, is capable of establishing a persistent infection within the host. This is despite the activation of both the innate and adaptive immune responses. B. burgdorferi utilizes several immune evasion tactics ranging from the regulation of surface proteins, tick saliva, antimicrobial peptide resistance, and the disabling of the germinal center. This review aims to cover the various methods by which B. burgdorferi evades detection and destruction by the host immune response, examining both the innate and adaptive responses. By understanding the methods employed by B. burgdorferi to evade the host immune response, we gain a deeper knowledge of B. burgdorferi pathogenesis and Lyme disease, and gain insight into how to create novel, effective treatments.


Cells ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 113 ◽  
Author(s):  
Stephanie Maia Acuña ◽  
Lucile Maria Floeter-Winter ◽  
Sandra Marcia Muxel

An inflammatory response is essential for combating invading pathogens. Several effector components, as well as immune cell populations, are involved in mounting an immune response, thereby destroying pathogenic organisms such as bacteria, fungi, viruses, and parasites. In the past decade, microRNAs (miRNAs), a group of noncoding small RNAs, have emerged as functionally significant regulatory molecules with the significant capability of fine-tuning biological processes. The important role of miRNAs in inflammation and immune responses is highlighted by studies in which the regulation of miRNAs in the host was shown to be related to infectious diseases and associated with the eradication or susceptibility of the infection. Here, we review the biological aspects of microRNAs, focusing on their roles as regulators of gene expression during pathogen–host interactions and their implications in the immune response against Leishmania, Trypanosoma, Toxoplasma, and Plasmodium infectious diseases.


Obesities ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 26-28
Author(s):  
Bruno Guigas

Obesity prevalence has increased continuously over the past 50 years, a dramatic worldwide expansion not only limited to industrialized countries but also observed in a large number of low- and middle-income countries experiencing rapid rural–urban transition [...]


2013 ◽  
Vol 22 (2) ◽  
pp. 253-259 ◽  
Author(s):  
Marcela Ribeiro Gasparini ◽  
Rafael Felipe da Costa Vieira ◽  
Denise Amaral Gomes do Nascimento ◽  
João Luis Garcia ◽  
Odilon Vidotto ◽  
...  

Despite our current knowledge of the immunology, pathology, and genetics of Anaplasma marginale, prevention in cattle is currently based on old standbys, including live attenuated vaccines, antibiotic treatment, and maintaining enzootic stability in cattle herds. In the present study, we evaluated the use of an immunostimulant complex (ISCOMATRIX) adjuvant, associated with a pool of recombinant major surface proteins (rMSP1a, rMSP1b, rMSP4 and rMSP5) to improve the humoral immune response triggered in calves mainly by IgG2. Ten calves were divided in three groups: 4 calves were inoculated with the ISCOMATRIX/rMSPs (G1); 2 calves were inoculated with ISCOMATRIX adjuvant (G2); and 4 calves received saline (G3). Three inoculations were administered at 21-day intervals. In G1, the calves showed significant increases in total IgG, IgG1 and IgG2 levels 21 days after the second inoculation, compared to the control group (p < 0.05), and G1 calves remained above the cut-off value 28 days after the third inoculation (p < 0.05). The post-immunized sera from calves in G1 reacted specifically for each of the rMSPs used. In conclusion, the ISCOMATRIX/rMSPs induced antigen-specific seroconversion in calves. Therefore, additional testing to explore the protection induced by rMSPs, both alone and in conjunction with proteins previously identified as subdominant epitopes, is warranted.


Sign in / Sign up

Export Citation Format

Share Document