Development of accelerated cooling for new plate mill

2013 ◽  
Vol 40 (8) ◽  
pp. 598-604 ◽  
Author(s):  
P. J. Lee ◽  
M. Raudensky ◽  
J. Horsky
2011 ◽  
Vol 189-193 ◽  
pp. 2515-2521 ◽  
Author(s):  
Bing Xing Wang ◽  
Yong Tian ◽  
Guo Yuan ◽  
Zhao Dong Wang ◽  
Guo Dong Wang ◽  
...  

Based on the new generation TMCP technology, The State Key Laboratory of rolling and automation, Northeastern University(RAL) developed an advanced cooling system(ADCOS-PM). The system was combination of ultra-fast cooling (UFC) equipment with the advantage of high cooling intensity and homogeneous cooling and traditional accelerated cooling equipment(ACC). The UFC equipment was composed of jet impingement cooling device with high-pressure water and the ACC equipment was composed of laminar cooling device with good controllability. The control object of ADCOS-PM control system including finish cooling temperature and cooling-rate of every stage was controlled by adjusting the parameters such as the run-out table speed, state of active and inactive jet, flow rate of active jet. The temperature profile of plate was completed on the run-out table so that the product with fine microstructure and good mechanical properties was produced. The ADCOS-PM was built in 4300mm plate mill of Anshan Iron and Steel Co., Ltd. in 2010 and the recycling products with high-performance were produced.


Author(s):  
O. V. Sych

On the basis of the conducted research, a complex of scientific and technological methods has been developed for various technological processes (thermomechanical processing with accelerated cooling, quenching from rolling and separate furnace heating with high-temperature tempering). The developed method provides the formation of the structure of acceptable heterogeneity and anisotropy according to different morphological and crystallographic parameters throughout the thickness of rolled products up to 100 mm from low alloy steels with a yield strength of at least 315–460 MPa and up to 60 mm from economically alloyed steels with a yield strength of at least 500–750 MPa. The paper presents results of the industrial implementation of hot plastic deformation and heat treatment schemes for the production of cold rolled steel sheet with yield strength of at least 315–750 MPa for the Arctic. The structure of sheet metal thickness is given, providing guaranteed characteristics of strength, ductility, cold resistance, weldability and crack resistance.


Author(s):  
A. S. Oryshchenko ◽  
V. A. Malyshevsky ◽  
E. A. Shumilov

The article deals with modeling of thermomechanical processing of high-strength steels at the Gleeble 3800 research complex, simulating thermomechanical processing with various temperature and deformation parameters of rolling and with accelerated cooling to a predetermined temperature. The identity of steel hardening processes at the Gleeble 3800 complex and specialized rolling mills, as well as the possibility of obtaining steels of unified chemical composition, are shown.


2018 ◽  
Vol 941 ◽  
pp. 633-638
Author(s):  
John Joseph Jonas ◽  
Clodualdo Aranas Jr. ◽  
Samuel F. Rodrigues

Under loading above the Ae3 temperature, austenite transforms displacively into Widmanstätten ferrite. Here the driving force for transformation is the net softening during the phase change while the obstacle consists of the free energy difference between austenite and ferrite as well as the work of shear accommodation and dilatation during the transformation. Once the driving force is higher than the obstacle, phase transformation occurs. This phenomenon was explored here by means of the optical and electron microscopy of a C-Mn steel deformed above their transformation temperatures. Strain-temperature-transformation (STT) curves are presented that accurately quantify the amount of dynamically formed ferrite; the kinetics of retransformation are also specified in the form of appropriate TTRT diagrams. This technique can be used to improve the models for transformation on accelerated cooling in strip and plate rolling.


Author(s):  
J. M. Gray ◽  
S. V. Subramanian

A quantitative understanding of hierarchical evolution of microstructure is essential in order to design the base chemistry and optimize rolling schedules to obtain the morphological microstructure coupled with high density and dispersion of crystallographic high angle boundaries to achieve the target strength and fracture properties in higher grade line pipe steels, microalloyed with niobium. Product-process integration has been the key concept underlying the development of niobium microalloyed line pipe steel technology over the years. The development of HTP technology based on 0.1 wt % Nb and low interstitial was predicated by advances in process metallurgy to control interstitial elements to low levels (C <0.03wt% and N< 0.003wt%), sulfur to ultra-low levels (S<20ppm), as well as in product metallurgy based on advances in basic science aspects of thermo-mechanical rolling and phase transformation of pancaked austenite under accelerated cooling conditions, and toughness properties of heat affected zones in welding of niobium microalloyed line pipes. A historical perspective/technological overview of evolution of HTP for line pipe applications is the focus of this paper in order to highlight the key metallurgical concepts underlying Nb microalloying technology which have paved the way for successful development of higher grade line pipe steels over the years.


Sign in / Sign up

Export Citation Format

Share Document