Kosmochlor and chromian jadeite aggregates from the Myanmar jadeitite area

2005 ◽  
Vol 69 (6) ◽  
pp. 1059-1075 ◽  
Author(s):  
G. H. Shi ◽  
B. Stöckhert ◽  
W. Y. Cui

AbstractFour distinct textures and related compositions of kosmochlor (Ko) and chromian jadeite in rocks from the Myanmar jadeitite area are described: (1) spheroidal or ellipsoidal aggregates with a corona texture surrounding relict chromite; (2) spheroidal or ellipsoidal aggregates with a core of jadeite; (3) granoblastic textures in undeformed coarse-grained clinopyroxene rocks; and (4) recrystallized fine-grained aggregates in deformed jadeitite. Nearly pure kosmochlor (97 mol.% NaCrSi2O6) was found in type 2 textures, closest to the end-member reported so far from a terrestrial rock. Sharp compositional boundaries between kosmochlor and chromian jadeite of variable composition are interpreted to be related to progressive crystallization or replacement at differing conditions. The compositions analysed plot along the kosmochlor-jadeite join. In contrast to conclusions of previous studies on the Myanmar clinopyroxenes there is no unequivocal evidence for miscibility gaps. The preservation of relict chromite in the centre of coronitic spheroidal or ellipsoidal aggregates of kosmochlor and jadeite indicates a metasomatic origin from a peridotite protolith at an inferred minimum pressure of 1.0 GPa and temperatures of 250—370°C. Recrystallization during later ductile deformation of the clinopyroxene rocks in the dislocation creep regime leads to fine-grained aggregates of chromian jadeite, which are of particular gemmological interest.

2021 ◽  
Author(s):  
Claudia A. Trepmann ◽  
Ane K. Engvik ◽  
Erick G. Prince Gutierrez

<p>The eclogites from Vårdalneset, Western Gneiss Region, Norway, show an exceptional large variety of reaction and deformation microfabrics that document the processes and conditions during burial and exhumation. Coarse grained eclogites comprise about 35% omphacite, 25% garnet and 20% amphibole with various amounts of white mica, zoisite, kyanite, rutile, zircon and pyrite. Their fabric is characterized by few mm long and several hundred µm wide amphibole and omphacite grains aligned in the foliation plane with zoned garnet porphyroblasts up to several mm in diameter. In contrast, finer-grained mylonitic eclogites with grain diameters of few hundred µm comprise systematically higher amounts of garnet (45%) and omphacite (35%) and generally less amphibole (< 5%) but similar amounts of zoisite, white mica, rutile and quartz. In the coarse-grained eclogite, amphibole shows evidence of dislocation creep as indicated by undulatory extinction, subgrains and recrystallized grains in necks of boudinaged coarse amphibole layers as well as in contact to garnet. The large garnet porphyroblasts generally show a complex zonation with an inclusion-rich Fe-poor and Mg-rich inner core surrounded by a zone with Fe- and Ca-rich patches and a broad Mg-rich, Ca- and Fe-poor rim. Only at contact to coarse amphibole an additional, a few tens of µm thin serrated rim further enriched in Mg can occur. At the direct contact to such serrated Mg-rich rims, amphibole is partly replaced by a fine-grained quartz-kyanite ± rutile aggregate, indicating dehydration reactions of amphibole. Quartz - kyanite ± rutile aggregates are surrounding garnet also in contact to omphacite, zoisite and to other garnet crystals. The microstructures suggest that deformation and dehydration of amphibole are coupled and played an important role during deformation of the eclogites finally leading to the mylonitic eclogites with higher amounts of garnet and omphacite. Deformation is suggested to have triggered the dehydration reaction by a slight and local increase in temperature. Furthermore, deformation provided additional pathways for the escaping fluids along the increased grain and phase boundary area, as indicated by commonly present quartz within interstitials between recrystallized amphibole grains. In all samples, few µm wide amphibole rims replacing garnets document restricted rehydration-reactions at a later stage. The large variety of the deformation and reaction microfabrics exemplarily show that both deformation and metamorphic reactions did not proceed at long-term continuous conditions, but that both are coupled and occurred episodically.</p>


2019 ◽  
Vol 65 (252) ◽  
pp. 531-541 ◽  
Author(s):  
TOMOTAKA SARUYA ◽  
KOKI NAKAJIMA ◽  
MORIMASA TAKATA ◽  
TOMOYUKI HOMMA ◽  
NOBUHIKO AZUMA ◽  
...  

ABSTRACTWe investigated the effects of microparticles and grain size on the microstructural evolutions and mechanical properties of polycrystalline ice. Uniaxial compression tests were conducted using fine-grained pure ice and silica-dispersed ice under various conditions. Deformation behavior of fine-grained ice was found to be characterized by stress exponent n ≈ 2 and activation energy Q ≈ 60 kJ mol−1. The derived strain rates of fine-grained ice were ≈ 1 order of magnitude larger than those of coarse-grained ice obtained in previous studies, and they were found to be independent of particle dispersion and dependent on the mean grain size of ice, with grain size exponent p ≈ 1.4. Work hardening was observed in dislocation creep, while the strain rate continued to decrease. These results indicate that the deformation mechanism of fine-grained ice is different from typical dislocation creep, often associated with n = 3. Although microparticles restricted grain growth, there was little direct effect on the deformation of fine-grained ice. Microstructural observations of the ice samples indicated that the grain boundaries were straight and that the subgrain boundary densities increased after deformation. Our experiments suggest that grain size and boundaries play important roles in the deformation processes of polycrystalline ice.


Solid Earth ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 95-116 ◽  
Author(s):  
Felix Hentschel ◽  
Claudia A. Trepmann ◽  
Emilie Janots

Abstract. Deformation microstructures of albitic plagioclase and K-feldspar were investigated in mylonitic pegmatites from the Austroalpine basement south of the western Tauern Window by polarized light microscopy, electron microscopy and electron backscatter diffraction to evaluate feldspar deformation mechanisms at greenschist facies conditions. The main mylonitic characteristics are alternating almost monophase quartz and albite layers, surrounding porphyroclasts of deformed feldspar and tourmaline. The dominant deformation microstructures of K-feldspar porphyroclasts are intragranular fractures at a high angle to the stretching lineation. The fractures are healed or sealed by polyphase aggregates of albite, K-feldspar, quartz and mica, which also occur along intragranular fractures of tourmaline and strain shadows around other porphyroclasts. These polyphase aggregates indicate dissolution–precipitation creep. K-feldspar porphyroclasts are partly replaced by albite characterized by a cuspate interface. This replacement is interpreted to take place by interface-coupled dissolution–precipitation driven by a solubility difference between K-feldspar and albite. Albite porphyroclasts are replaced at boundaries parallel to the foliation by fine-grained monophase albite aggregates of small strain-free new grains mixed with deformed fragments. Dislocation glide is indicated by bent and twinned albite porphyroclasts with internal misorientation. An indication of effective dislocation climb with dynamic recovery, for example, by the presence of subgrains, is systematically missing. We interpret the grain size reduction of albite to be the result of coupled dislocation glide and fracturing (low-temperature plasticity). Subsequent growth is by a combination of strain-induced grain boundary migration and formation of growth rims, resulting in an aspect ratio of albite with the long axis within the foliation. This strain-induced replacement by nucleation (associated dislocation glide and microfracturing) and subsequent growth is suggested to result in the observed monophase albite layers, probably together with granular flow. The associated quartz layers show characteristics of dislocation creep by the presence of subgrains, undulatory extinction and sutured grain boundaries. We identified two endmember matrix microstructures: (i) alternating layers of a few hundred micrometres' width, with isometric, fine-grained feldspar (on average 15 µm in diameter) and coarse-grained quartz (a few hundred micrometres in diameter), representing lower strain compared to (ii) alternating thin layers of some tens of micrometres' width composed of fine-grained quartz (<20 µm in diameter) and coarse elongated albite grains (long axis of a few tens of micrometres) defining the foliation, respectively. Our observations indicate that grain size reduction by strain-induced replacement of albite (associated dislocation glide and microfracturing) followed by growth and granular flow simultaneous with dislocation creep of quartz are playing the dominating role in formation of the mylonitic microstructure.


Geosciences ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 420
Author(s):  
Joseph W. Millard ◽  
Caleb W. Holyoke ◽  
Rachel K. Wells ◽  
Cole Blasko ◽  
Andreas K. Kronenberg ◽  
...  

We determined the activation volumes (V*) for polycrystalline magnesite with grain sizes of 2 and 80 µm deforming by low temperature plasticity (LTP) mechanisms (kinking and dislocation glide), diffusion creep, and dislocation creep at temperatures of 500, 750, and 900 °C, respectively, and a strain rate of 1–2 × 10−5 s−1 at effective pressures of 2.9–7.5 GPa in a D-DIA and 0.76 GPa in a Griggs apparatus. In each set of experiments performed at a given temperature, the strength of magnesite increases with increasing pressure. Microstructures of fine-grained magnesite deformed at 500 °C and 750 °C are consistent with deformation by LTP mechanisms and diffusion creep, respectively. Microstructures of coarse-grained magnesite deformed at 900 °C are consistent with deformation by dislocation creep. Pressure dependencies of magnesite flow laws for LTP, diffusion creep, and dislocation creep are given by activation volumes of 34 (± 7), 2 (± 1), and 10 (± 5) × 10−6 m3/mol, respectively. Addition of these activation volumes to previously determined flow laws predicts magnesite strength to be much lower than the flow strength of olivine at all subduction zone depths of the upper mantle. Thus, subducting oceanic lithosphere that has been partially carbonated by reaction with CO2-bearing fluids may deform at lowered stresses where magnesite is present, possibly resulting in strain localization and unstable run-away shear.


2018 ◽  
Author(s):  
Felix Hentschel ◽  
Claudia A. Trepmann ◽  
Emilie Janots

Abstract. Deformation microstructures of albitic plagioclase and K-feldspar were investigated in mylonitic pegmatites from the Austroalpine basement south of the western Tauern Window by polarized light microscopy, electron microscopy and electron backscatter diffraction to evaluate the rheologically dominant feldspar deformation mechanisms at greenschist facies conditions. The main mylonitic characteristics are alternating almost monophase quartz and albite layers, surrounding porphyroclasts of deformed feldspar and tourmaline. The dominant deformation microstructures of K-feldspar porphyroclasts are intragranular fractures parallel to the main shortening direction indicated by the foliation. The fractures are healed or sealed by polyphase aggregates of albite, K-feldspar, quartz and mica, which also occur along intragranular fractures of tourmaline and strain shadows around other porphyroclasts. Polyphase aggregates at sites of dilation indicate dissolution-precipitation creep. K-feldspar porphyroclasts are partly replaced by albite characterized by a sawtooth-shaped interface. This replacement is interpreted to be by interface-coupled dissolution-precipitation driven by a solubility difference between K-feldspar and albite and is not controlled by strain. In contrast, albite porphyroclasts are replaced at sites of shortening by fine-grained monophase albite aggregates of small strain-free new grains mixed with deformed fragments. Dislocation glide is indicated by bent, kinked and twinned albite. No indication of effective dislocation climb with dynamic recovery, for example by the presence of subgrains, a crystallographic preferred orientation or sutured grain boundaries was observed. We interpret the grain size reduction of albite at sites of shortening to be the result of coupled fracturing, dislocation glide and strain-induced grain boundary migration. This strain-induced replacement by nucleation and growth leads, together with granular flow, to the monophase albite layers. The associated quartz layers in contrast, show characteristics of dislocation creep by the presence of subgrains, undulatory extinction and sutured grain boundaries. We identified two endmember matrix microstructures that correlate with strain. Samples with lower strain are characterized by layers of a few hundreds of µm width, with coarse-grained quartz and layers with isometric, fine-grained feldspar. Higher strained samples are characterized by narrow alternating layers of some tens of µm width composed of fine-grained quartz and coarse albite grains elongated parallel to the stretching lineation, respectively. These observations indicate that grain size reduction by strain-induced replacement of albite, granular flow assisted by fracturing and dissolution-precipitation together with dislocation creep of quartz are rheologically dominant.


Author(s):  
Wang Zheng-fang ◽  
Z.F. Wang

The main purpose of this study highlights on the evaluation of chloride SCC resistance of the material,duplex stainless steel,OOCr18Ni5Mo3Si2 (18-5Mo) and its welded coarse grained zone(CGZ).18-5Mo is a dual phases (A+F) stainless steel with yield strength:512N/mm2 .The proportion of secondary Phase(A phase) accounts for 30-35% of the total with fine grained and homogeneously distributed A and F phases(Fig.1).After being welded by a specific welding thermal cycle to the material,i.e. Tmax=1350°C and t8/5=20s,microstructure may change from fine grained morphology to coarse grained morphology and from homogeneously distributed of A phase to a concentration of A phase(Fig.2).Meanwhile,the proportion of A phase reduced from 35% to 5-10°o.For this reason it is known as welded coarse grained zone(CGZ).In association with difference of microstructure between base metal and welded CGZ,so chloride SCC resistance also differ from each other.Test procedures:Constant load tensile test(CLTT) were performed for recording Esce-t curve by which corrosion cracking growth can be described, tf,fractured time,can also be recorded by the test which is taken as a electrochemical behavior and mechanical property for SCC resistance evaluation. Test environment:143°C boiling 42%MgCl2 solution is used.Besides, micro analysis were conducted with light microscopy(LM),SEM,TEM,and Auger energy spectrum(AES) so as to reveal the correlation between the data generated by the CLTT results and micro analysis.


Author(s):  
Zhuliang Yao ◽  
Shijie Cao ◽  
Wencong Xiao ◽  
Chen Zhang ◽  
Lanshun Nie

In trained deep neural networks, unstructured pruning can reduce redundant weights to lower storage cost. However, it requires the customization of hardwares to speed up practical inference. Another trend accelerates sparse model inference on general-purpose hardwares by adopting coarse-grained sparsity to prune or regularize consecutive weights for efficient computation. But this method often sacrifices model accuracy. In this paper, we propose a novel fine-grained sparsity approach, Balanced Sparsity, to achieve high model accuracy with commercial hardwares efficiently. Our approach adapts to high parallelism property of GPU, showing incredible potential for sparsity in the widely deployment of deep learning services. Experiment results show that Balanced Sparsity achieves up to 3.1x practical speedup for model inference on GPU, while retains the same high model accuracy as finegrained sparsity.


2021 ◽  
Vol 83 (4) ◽  
Author(s):  
S. Adam Soule ◽  
Michael Zoeller ◽  
Carolyn Parcheta

AbstractHawaiian and other ocean island lava flows that reach the coastline can deposit significant volumes of lava in submarine deltas. The catastrophic collapse of these deltas represents one of the most significant, but least predictable, volcanic hazards at ocean islands. The volume of lava deposited below sea level in delta-forming eruptions and the mechanisms of delta construction and destruction are rarely documented. Here, we report on bathymetric surveys and ROV observations following the Kīlauea 2018 eruption that, along with a comparison to the deltas formed at Pu‘u ‘Ō‘ō over the past decade, provide new insight into delta formation. Bathymetric differencing reveals that the 2018 deltas contain more than half of the total volume of lava erupted. In addition, we find that the 2018 deltas are comprised largely of coarse-grained volcanic breccias and intact lava flows, which contrast with those at Pu‘u ‘Ō‘ō that contain a large fraction of fine-grained hyaloclastite. We attribute this difference to less efficient fragmentation of the 2018 ‘a‘ā flows leading to fragmentation by collapse rather than hydrovolcanic explosion. We suggest a mechanistic model where the characteristic grain size influences the form and stability of the delta with fine grain size deltas (Pu‘u ‘Ō‘ō) experiencing larger landslides with greater run-out supported by increased pore pressure and with coarse grain size deltas (Kīlauea 2018) experiencing smaller landslides that quickly stop as the pore pressure rapidly dissipates. This difference, if validated for other lava deltas, would provide a means to assess potential delta stability in future eruptions.


Author(s):  
Shanshan Yu ◽  
Jicheng Zhang ◽  
Ju Liu ◽  
Xiaoqing Zhang ◽  
Yafeng Li ◽  
...  

AbstractIn order to solve the problem of distributed denial of service (DDoS) attack detection in software-defined network, we proposed a cooperative DDoS attack detection scheme based on entropy and ensemble learning. This method sets up a coarse-grained preliminary detection module based on entropy in the edge switch to monitor the network status in real time and report to the controller if any abnormality is found. Simultaneously, a fine-grained precise attack detection module is designed in the controller, and a ensemble learning-based algorithm is utilized to further identify abnormal traffic accurately. In this framework, the idle computing capability of edge switches is fully utilized with the design idea of edge computing to offload part of the detection task from the control plane to the data plane innovatively. Simulation results of two common DDoS attack methods, ICMP and SYN, show that the system can effectively detect DDoS attacks and greatly reduce the southbound communication overhead and the burden of the controller as well as the detection delay of the attacks.


Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 111
Author(s):  
Ivana O. Mladenović ◽  
Nebojša D. Nikolić ◽  
Jelena S. Lamovec ◽  
Dana Vasiljević-Radović ◽  
Vesna Radojević

The mechanical characteristics of electrochemically deposited copper coatings have been examined by application of two hardness composite models: the Chicot-Lesage (C-L) and the Cheng-Gao (C-G) models. The 10, 20, 40 and 60 µm thick fine-grained Cu coatings were electrodeposited on the brass by the regime of pulsating current (PC) at an average current density of 50 mA cm−2, and were characterized by scanning electron (SEM), atomic force (AFM) and optical (OM) microscopes. By application of the C-L model we determined a limiting relative indentation depth (RID) value that separates the area of the coating hardness from that with a strong effect of the substrate on the measured composite hardness. The coating hardness values in the 0.9418–1.1399 GPa range, obtained by the C-G model, confirmed the assumption that the Cu coatings on the brass belongs to the “soft film on hard substrate” composite hardness system. The obtained stress exponents in the 4.35–7.69 range at an applied load of 0.49 N indicated that the dominant creep mechanism is the dislocation creep and the dislocation climb. The obtained mechanical characteristics were compared with those recently obtained on the Si(111) substrate, and the effects of substrate characteristics such as hardness and roughness on the mechanical characteristics of the electrodeposited Cu coatings were discussed and explained.


Sign in / Sign up

Export Citation Format

Share Document