Alteration of glassy volcanic rocks to Naand Ca-smectites in the Neogene basin of Manisa, western Anatolia, Turkey

Clay Minerals ◽  
2013 ◽  
Vol 48 (3) ◽  
pp. 513-527 ◽  
Author(s):  
M. Çiflikli ◽  
E. Çiftçi ◽  
H. Bayhan

AbstractAlkali- and Ca-rich smectites occur in association with Neogene lacustrine sedimentary rocks and high-K calc-alkaline volcanic rocks with compositions ranging from andesite to rhyolite in western Anatolia (Turkey). Major clay occurrences are associated predominantly with the Foça and Akçaköy ignimbrites and with the ignimbrites within the Rahmanlar pyroclastics. Experimental studies indicate that the main clay minerals present are Na- and Ca-smectite and subordinate illite, associated with silica polymorphs, trace clinoptilolite and chlorite. The authigenic minerals formed by weathering and metasomatic reactions between hot volcanic material and lake water. Smectite was produced as a result of argillic alteration of the volcanic glass and feldspars of the ignimbrites, Rahmanlar pyroclastics and reworked volcaniclastic sediments through chemical weathering and dissolution-precipitation processes and formed as authigenic phases both in terrestrial and nearby shallow lacustrine environments under prevalent humid or semi-humid climate during the Neogene.

2021 ◽  
pp. 1-22
Author(s):  
Jia-Hao Jing ◽  
Hao Yang ◽  
Wen-Chun Ge ◽  
Yu Dong ◽  
Zheng Ji ◽  
...  

Abstract Late Mesozoic igneous rocks are important for deciphering the Mesozoic tectonic setting of NE China. In this paper, we present whole-rock geochemical data, zircon U–Pb ages and Lu–Hf isotope data for Early Cretaceous volcanic rocks from the Tulihe area of the northern Great Xing’an Range (GXR), with the aim of evaluating the petrogenesis and genetic relationships of these rocks, inferring crust–mantle interactions and better constraining extension-related geodynamic processes in the GXR. Zircon U–Pb ages indicate that the rhyolites and trachytic volcanic rocks formed during late Early Cretaceous time (c. 130–126 Ma). Geochemically, the highly fractionated I-type rhyolites exhibit high-K calc-alkaline, metaluminous to weakly peraluminous characteristics. They are enriched in light rare earth elements (LREEs) and large-ion lithophile elements (LILEs) but depleted in high-field-strength elements (HFSEs), with their magmatic zircons ϵHf(t) values ranging from +4.1 to +9.0. These features suggest that the rhyolites were derived from the partial melting of a dominantly juvenile, K-rich basaltic lower crust. The trachytic volcanic rocks are high-K calc-alkaline series and exhibit metaluminous characteristics. They have a wide range of zircon ϵHf(t) values (−17.8 to +12.9), indicating that these trachytic volcanic rocks originated from a dominantly lithospheric-mantle source with the involvement of asthenospheric mantle materials, and subsequently underwent extensive assimilation and fractional crystallization processes. Combining our results and the spatiotemporal migration of the late Early Cretaceous magmatic events, we propose that intense Early Cretaceous crust–mantle interaction took place within the northern GXR, and possibly the whole of NE China, and that it was related to the upwelling of asthenospheric mantle induced by rollback of the Palaeo-Pacific flat-subducting slab.


2021 ◽  
pp. M55-2018-68 ◽  
Author(s):  
Philip T. Leat ◽  
Teal R. Riley

AbstractThe Antarctic Peninsula contains a record of continental-margin volcanism extending from Jurassic to Recent times. Subduction of the Pacific oceanic lithosphere beneath the continental margin developed after Late Jurassic volcanism in Alexander Island that was related to extension of the continental margin. Mesozoic ocean-floor basalts emplaced within the Alexander Island accretionary complex have compositions derived from Pacific mantle. The Antarctic Peninsula volcanic arc was active from about Early Cretaceous times until the Early Miocene. It was affected by hydrothermal alteration, and by regional and contact metamorphism generally of zeolite to prehnite–pumpellyite facies. Distinct geochemical groups recognized within the volcanic rocks suggest varied magma generation processes related to changes in subduction dynamics. The four groups are: calc-alkaline, high-Mg andesitic, adakitic and high-Zr, the last two being described in this arc for the first time. The dominant calc-alkaline group ranges from primitive mafic magmas to rhyolite, and from low- to high-K in composition, and was generated from a mantle wedge with variable depletion. The high-Mg and adakitic rocks indicate periods of melting of the subducting slab and variable equilibration of the melts with mantle. The high-Zr group is interpreted as peralkaline and may have been related to extension of the arc.


2020 ◽  
pp. 467-495
Author(s):  
T. Baker ◽  
S. Mckinley ◽  
S. Juras ◽  
Y. Oztas ◽  
J. Hunt ◽  
...  

Abstract The Miocene Kışladağ deposit (~17 Moz), located in western Anatolia, Turkey, is one of the few global examples of Au-only porphyry deposits. It occurs within the West Tethyan magmatic belt that can be divided into Cretaceous, Cu-dominant, subduction-related magmatic arc systems and the more widespread Au-rich Cenozoic magmatic belts. In western Anatolia, Miocene magmatism was postcollisional and was focused in extension-related volcanosedimentary basins that formed in response to slab roll back and a major north-south slab tear. Kışladağ formed within multiple monzonite porphyry stocks and dikes at the contact between Menderes massif metamorphic basement and volcanic rocks of the Beydağı stratovolcano in the Uşak-Güre basin. The mineralized magmatic-hydrothermal system formed rapidly (<400 kyr) between ~14.75 and 14.36 Ma in a shallow (<1 km) volcanic environment. Volcanism continued to at least 14.26 ± 0.09 Ma based on new age data from a latite lava flow at nearby Emiril Tepe. Intrusions 1 and 2 were the earliest (14.73 ± 0.05 and 14.76 ± 0.01 Ma, respectively) and best mineralized phases (average median grades of 0.64 and 0.51 g/t Au, respectively), whereas younger intrusions host progressively less Au (Intrusion 2A: 14.60 ± 0.06 Ma and 0.41 g/t Au; Intrusion 2 NW: 14.45 ± 0.08 Ma and 0.41 g/t Au; Intrusion 3: 14.39 ± 0.06 and 14.36 ± 0.13 Ma and 0.19 g/t Au). A new molybdenite age of 14.60 ± 0.07 Ma is within uncertainty of the previously published molybdenite age (14.49 ± 0.06 Ma), and supports field observations that the bulk of the mineralization formed prior to the emplacement of Intrusion 3. Intrusions 1 and 2 are altered to potassic (biotite-K-feldspar-quartz ± magnetite) and younger but deeper sodic-calcic (feldspar-amphibole-magnetite ± quartz ± carbonate) assemblages, both typically pervasive with disseminated to veinlet-hosted pyrite ± chalcopyrite ± molybdenite and localized quartz-feldspar stockwork veinlets and sodic-calcic breccias. Tourmaline-white mica-quartz-pyrite alteration surrounds the potassic core both within the intrusions and outboard in the volcanic rocks. Tourmaline was most strongly developed on the inner margins of the tourmaline-white mica zone, particularly along the Intrusion 1 volcanic contact where it formed breccias and veins, including Maricunga-style veinlets. Field relationships show that the early magmatic-hydrothermal events were cut by Intrusion 2A, which was then overprinted by Au-bearing argillic (kaolinite-pyrite ± quartz) alteration, followed by Intrusion 3 and late-stage, low-grade to barren argillic and advanced argillic alteration (quartz-pyrite ± alunite ± dickite ± pyrophyllite). Gold deportment changes with each successive hydrothermal event. The early potassic and sodic-calcic alteration controls much of the original Au distribution, with the Au dominantly deposited with feldspar and lesser quartz and pyrite. Tourmaline-white mica and argillic alteration events overprinted and altered the early Au-bearing feldspathic alteration and introduced additional Au that was dominantly associated with pyrite. Analogous Au-only deposits such as Maricunga, Chile, La Colosa, Colombia, and Biely Vrch, Slovakia, are characterized by similar alteration styles and Au deportment. The deportment of Au in these Au-only porphyry deposits differs markedly from that in Au-rich porphyry Cu deposits where Au is typically associated with Cu sulfides.


Lithos ◽  
1999 ◽  
Vol 46 (4) ◽  
pp. 773-802 ◽  
Author(s):  
R. Benito ◽  
J. López-Ruiz ◽  
J.M. Cebriá ◽  
J. Hertogen ◽  
M. Doblas ◽  
...  

2008 ◽  
Vol 145 (4) ◽  
pp. 463-474 ◽  
Author(s):  
SHEN LIU ◽  
RUI-ZHONG HU ◽  
CAI-XIA FENG ◽  
HAI-BO ZOU ◽  
CAI LI ◽  
...  

AbstractGeochemical and Sr–Nd–Pb isotopic data are presented for volcanic rocks from Zougouyouchaco (30.5 Ma) and Dogai Coring (39.7 Ma) of the southern and middle Qiangtang block in northern Tibet. The volcanic rocks are high-K calc-alkaline trachyandesites and dacites, with SiO2 contents ranging from 58.5 to 67.1 wt % The rocks are enriched in light REE (LREE) and contain high Sr (649 to 986 ppm) and relatively low Yb (0.8 to 1.2 ppm) and Y (9.5 to 16.6 ppm) contents, resulting in high La/Yb (29–58) and Sr/Y (43–92) ratios, as well as relatively high MgO contents and Mg no., similar to the compositions of adakites formed by slab melting in subduction zones. However, the adakitic rocks in the Qiangtang block are characterized by relatively low εNd(t) values (−3.8 to −5.0) and highly radiogenic Sr ((87Sr/86Sr)i=0.706–0.708), which are inconsistent with an origin by slab melting. The geochemistry and tectonics indicate that the adakitic volcanic rocks were most likely derived from partial melting of delaminated lower continental crust. As the pristine adakitic melts rose, they interacted with the surrounding mantle peridotite, elevating their MgO values and Mg numbers.


2018 ◽  
Vol 55 (3) ◽  
pp. 252-271 ◽  
Author(s):  
Cahit Helvacı ◽  
Tolga Oyman ◽  
İbrahim Gündoğan ◽  
Hasan Sözbilir ◽  
Osman Parlak ◽  
...  

The Çaldağ Ni–Co deposit is characterized by a reddish brown oxide lateritic regolith, containing residual Ni deposit formed by the intense tropical weathering of peridotites. Nickel–Co ore is associated with transported ferricrete during the late Paleocene – middle Eocene, represented by colloform Fe oxides and residual lateritization during the Oligocene. The lateritic regoliths are developed over dunitic ultramafic rocks and consist mainly of smectite, berthierine, kaolinite, gypsum, pyrite, takovite, and pecoraite. These units were examined using polarized-light microscopy, X-ray diffraction, scanning and transmission electron microscopy, and geochemical methods. Mineralogical zonation from the base of the profile upwards has the following zones: ultramafic bedrocks, serpentinized ultramafic rocks (saprock), saprolite, carbonate- and sulfide-bearing zone, ferruginous saprolite zone, and silcrete. In addition, Fe oxides, smectite and opal-CT, and quartz increase towards the surface, whereas olivine, pyroxene, and serpentine decrease upwards in response to chemical weathering. Nickel–Co mineralization associated with Fe oxides and smectitic clays formed under wet and dry conditions, respectively, as a result of an increased Fe2O3 + Al2O3 + Ni + Co/MgO ratio. Field observations and mineralogical and geochemical analyses reveal that the smectite formed under basic conditions was controlled by multistage chemical weathering of ultramafic and volcanic rocks and by the concentrations of Si, Al, Fe, and Mg. Locally, concentrations of S in conjunction with Fe and Ca resulted in precipitation of goethite–hematite, gypsum, and pyrite in dissolution voids in association with smectite under acidic conditions that developed in a well-drained system.


2014 ◽  
Vol 962-965 ◽  
pp. 282-285
Author(s):  
Yan Dong Peng ◽  
Chun Yun Yu ◽  
Xiong Fei Bian

Volcanic rocks of Yixian Formation were widely distributed in western Liaoning. The Yixian volcanic cycle of early Cretaceous in the Chaoyang basin can be divided into two subcycles. The first subcycle is composed of basalt, basalt andesite and andesite. The second subcycle is composed of trachyandensite and trachyte. The volcanic rocks are characterized by high SiO2, Al2O3, K2O and Na2O, and comparatively low TiO2 components. The volcanic rocks are obviously enriched in incompatible elements, and depleted in compatible elements. The ∑REE of volcanic rocks is high and rich in LREE. The spider patterns are the right-incline, there is a slight low Eu negative abnormality and low Ce negative abnormality. The characteristics show that volcanic rocks of Yixian Formation belong to the high-K calc-alkaline magmatic serious. Comprehensive study shows that the volcanic rocks of Yixian Formation were generated in response to lithosphere extension in the continent intraplate orogenic belt.


2020 ◽  
Vol 36 (11) ◽  
pp. 3265-3286
Author(s):  
MENG FanChao ◽  
◽  
QU ZhiJing ◽  
CUI Yan ◽  
CHEN Yong ◽  
...  

2014 ◽  
Vol 185 (2) ◽  
pp. 75-92 ◽  
Author(s):  
Michel Cuney

Abstract The strongly incompatible behaviour of uranium in silicate magmas results in its concentration in the most felsic melts and a prevalence of granites and rhyolites as primary U sources for the formation of U deposits. Despite its incompatible behavior, U deposits resulting directly from magmatic processes are quite rare. In most deposits, U is mobilized by hydrothermal fluids or ground water well after the emplacement of the igneous rocks. Of the broad range of granite types, only a few have U contents and physico-chemical properties that permit the crystallization of accessory minerals from which uranium can be leached for the formation of U deposits. The first granites on Earth, which crystallized uraninite, dated at 3.1 Ga, are the potassic granites from the Kaapval craton (South Africa) which were also the source of the detrital uraninite for the Dominion Reef and Witwatersrand quartz pebble conglomerate deposits. Four types of granites or rhyolites can be sufficiently enriched in U to represent a significant source for the genesis of U deposits: peralkaline, high-K metaluminous calc-alkaline, L-type peraluminous and anatectic pegmatoids. L-type peraluminous plutonic rocks in which U is dominantly hosted in uraninite or in the glass of their volcanic equivalents represent the best U source. Peralkaline granites or syenites are associated with the only magmatic U-deposits formed by extreme fractional crystallization. The refractory character of the U-bearing minerals does not permit their extraction under the present economic conditions and make them unfavorable U sources for other deposit types. By contrast, felsic peralkaline volcanic rocks, in which U is dominantly hosted in the glassy matrix, represent an excellent source for many deposit types. High-K calc-alkaline plutonic rocks only represent a significant U source when the U-bearing accessory minerals (U-thorite, allanite, Nb oxides) become metamict. The volcanic rocks of the same geochemistry may be also a favorable uranium source if a large part of the U is hosted in the glassy matrix. The largest U deposit in the world, Olympic Dam in South Australia is hosted by highly fractionated high-K plutonic and volcanic rocks, but the origin of the U mineralization is still unclear. Anatectic pegmatoids containing disseminated uraninite which results from the partial melting of uranium-rich metasediments and/or metavolcanic felsic rocks, host large low grade U deposits such as the Rössing and Husab deposits in Namibia. The evaluation of the potentiality for igneous rocks to represent an efficient U source represents a critical step to consider during the early stages of exploration for most U deposit types. In particular a wider use of the magmatic inclusions to determine the parent magma chemistry and its U content is of utmost interest to evaluate the U source potential of sedimentary basins that contain felsic volcanic acidic tuffs.


Sign in / Sign up

Export Citation Format

Share Document