Demountable polished extra-thin sections and their use in transmission electron microscopy

1981 ◽  
Vol 44 (335) ◽  
pp. 357-359 ◽  
Author(s):  
D. J. Barber

The advantages of polished ultra-thin sections (PUTS) in the study of very fine-grained materials, such as occur in some meteorites, have been illustrated by Fredriksson et al. (1978) whose technique is based on the earlier work of Beauchamp and WiUiford (1974). An essential feature of such methods for friable and heterogeneous materials is the use of a medium, usually an epoxy resin, to consolidate and partially impregnate them. Normally one polished side of the specimen is bonded to a glass slide during preparation, and the finished PUTS are integral with the slide on completion. PUTS are typically 2-5 microns in thickness.

Author(s):  
Nakazo Watari ◽  
Yasuaki Hotta ◽  
Yoshio Mabuchi

It is very useful if we can observe the identical cell elements within the same sections by light microscopy (LM), transmission electron microscopy (TEM) and/or scanning electron microscopy (SEM) sequentially, because, the cell fine structure can not be indicated by LM, while the color is; on the other hand, the cell fine structure can be very easily observed by EM, although its color properties may not. However, there is one problem in that LM requires thick sections of over 1 μm, while EM needs very thin sections of under 100 nm. Recently, we have developed a new method to observe the same cell elements within the same plastic sections using both light and transmission (conventional or high-voltage) electron microscopes.In this paper, we have developed two new observation methods for the identical cell elements within the same sections, both plastic-embedded and paraffin-embedded, using light microscopy, transmission electron microscopy and/or scanning electron microscopy (Fig. 1).


Author(s):  
J. Cadoz ◽  
J. Castaing ◽  
J. Philibert

Plastic deformation of alumina has been much studied; basal slip occurs and dislocation structures have been investigated by transmission electron microscopy (T.E.M.) (1). Non basal slip has been observed (2); the prismatic glide system <1010> {1210} has been obtained by compression tests between 1400°C and 1800°C (3). Dislocations with <0110> burgers vector were identified using a 100 kV microscope(4).We describe the dislocation structures after prismatic slip, using high voltage T.E.M. which gives much information.Compression tests were performed at constant strainrate (∿10-4s-1); the maximum deformation reached was 0.03. Thin sections were cut from specimens deformed at 1450°C, either parallel to the glide plane or perpendicular to the glide direction. After mechanical thinning, foils were produced by ion bombardment. Details on experimental techniques can be obtained through reference (3).


2000 ◽  
Vol 15 (11) ◽  
pp. 2488-2493 ◽  
Author(s):  
A. N. Thorpe ◽  
F. E. Senftle ◽  
M. Holt ◽  
J. Grant ◽  
W. Lowe ◽  
...  

Magnetization measurements, transmission electron microscopy (TEM), and high-resolution micro-x-ray fluorescence (μ-XRF) using a synchrotron radiation source (Advanced Photon Source) were used to examine Fe3O4 particle agglomerates of nominally 10-nm particles at low concentrations (down to 0.03%) in thick epoxy resin samples. The magnetization measurements showed that at low concentrations (<0.5%) the magnetite particles, although closely packed in the agglomerates, did not interact magnetically. Predicated on a 2-μm sample step scan, the μ-XRF results were compatible with the presence of spherical agglomerates due to magnetostatic attraction, and these ranged in size from 100 to several thousand nanometers, as observed in TEM measurements. At smaller step scans the resolution could be significantly improved. Thus, the synchroton μ-XRF method was very useful in detecting very small concentrations of particles in thick samples and could probably be used to detect particles in amounts as low as 10−16 g.


Further experiments by transmission electron microscopy on thin sections of stainless steel deformed by small amounts have enabled extended dislocations to be observed directly. The arrangement and motion of whole and partial dislocations have been followed in detail. Many of the dislocations are found to have piled up against grain boundaries. Other observations include the formation of wide stacking faults, the interaction of dislocations with twin boundaries, and the formation of dislocations at thin edges of the foils. An estimate is made of the stacking-fault energy from a consideration of the stresses present, and the properties of the dislocations are found to be in agreement with those expected from a metal of low stacking-fault energy.


2005 ◽  
Vol 13 (5) ◽  
pp. 525-527
Author(s):  
Cheng Yiyun ◽  
Cui Ronghui ◽  
He Pingsheng

This study presents a new method of preparing Mg(OH)2/epoxy resin nanocomposites. An epoxy resin micro-emulsion is taken as a micro-reactor for the formation of Mg(OH)2 nano-crystals. After the reaction, the collected epoxy proved to be a composite with embedded nano-Mg(OH)2. Transmission electron microscopy (TEM) indicated that the Mg(OH)2 nano-crystals were dispersed uniformly in cured epoxy resin matrix.


Clay Minerals ◽  
1987 ◽  
Vol 22 (2) ◽  
pp. 179-185 ◽  
Author(s):  
T. Imbert ◽  
A. Desprairies

AbstractTransmission electron microscopy of ultramicrotomed thin-sections of Pleistocene and Eocene glass shards revealed the neoformation of (i) illite and (ii) halloysite at the glass periphery. According to previous experimental studies, halloysite neoformation in marine environments can occur on glass shards deposited in Si-rich sediments; an excess of Ca tends to inhibit the reaction.


2007 ◽  
Vol 1056 ◽  
Author(s):  
Jafar F. Al-Sharab ◽  
Rajendra Sadangi ◽  
Vijay Shukla ◽  
Bernard Kear

ABSTRACTPolycrystalline Y2O3 is the material of choice for IR windows since it has excellent optical properties in the visible, and near infra-red band. However, current processing methods yield polycrystalline Y2O3 with large grain size (> 100 μm), which limits the hardness and erosion resistance attainable. One way to improve strength is to develop an ultra-fine grained material with acceptable optical transmission properties. To realize a fine-grained ceramic, one approach is to develop a composite structure, in which one phase inhibits the growth of the other phase during processing. In this study, Y2O3-MgO nanocomposite with various MgO content (20, 50 and 80 mol%) were synthesized using plasma spray method. Extensive characterization techniques including x-ray diffraction, scanning electron microscopy (SEM), Transmission electron microscopy (TEM) and Energy Dispersive spectrometry (EDS) were employed to study the synthesized powder as well as the consolidated sample. Transmission Electron Microscopy, as well as EDS chemical mapping, revealed that the consolidated sample have bi-continuous MgO-Y2O3 nanostructure with an average grain size of 200 nm.


1975 ◽  
Vol 21 (3) ◽  
pp. 252-262 ◽  
Author(s):  
D. L. Balkwill ◽  
D. P. Labeda ◽  
L. E. Casida Jr.

A simplified procedure is presented for releasing and concentrating indigenous microbial cells from soil for viewing by transmission electron microscopy as thin sections or replicas of frozen-etched preparations. This procedure is compared with two others reported earlier, and their relative merits are discussed as concerns the choice of procedure for the cellular information desired from the soil. Freeze-etching showed that the cell types and size distributions for cells which have been released and concentrated from soil are in general agreement with those for cells in a crude soil slurry in which no attempt to release and concentrate cells was made. Microcolonies were present both in the crude slurry and in the discard soil debris centrifugation pellets from the cell release and concentration procedures. In contrast to the historic assumptions, these microcolonies, as well as some individual cells embedded in soil debris could not be broken up and (or) dislodged so that they would be washed from the soil. The relative numbers of these cells remaining with the soil debris, however, could not be quantitated in the present study.


Sign in / Sign up

Export Citation Format

Share Document