Mineralogy of the near-surface expression of Au-As-Cu mineralization in an arid environment

1994 ◽  
Vol 58 (391) ◽  
pp. 315-323
Author(s):  
R. Bogoch ◽  
M. Shirav ◽  
A. Gilat ◽  
L. Halicz

AbstractIn the arid, Late Precambrian terrain of southern Israel, a complex suite of minerals and amorphous species were deposited in host gneiss from fluids under near-neutral conditions within 1 m of the surface. The morphology of secondary gold appears to relate to its host mineral (skeletal-dendritic with quartz; multi-faceted crystals with arsenates; spherical droplets with iron oxide). The gold is very fine-grained, and was most likely complexed as a thiosulphate.Three amorphous phases are present (iron oxide, chrysocolla, Cu-Mn-(Fe-As) silicate). At least in part, gold and baryte appear to have crystallized out of a metal-Fe-oxide gel. Other minerals, including apatite, anglesite, and conichalcite, may have grown from appropriate crystallites present in the gel.The conichalcite occurs mainly as bladed to acicular radial spherulites. In the presence of lead, a solid solution phase between duftite and conichalcite (‘Pb-conichalcite’) was formed.

1996 ◽  
Vol 11 (9) ◽  
pp. 2186-2197 ◽  
Author(s):  
H. Z. Xiao ◽  
I. M. Robertson ◽  
H. K. Birnbaum

The microstructural and microchemical changes produced in a Ti–25Al–10Nb–3V–1Mo alloy (at. %) by charging at high temperatures in high pressures of hydrogen gas have been studied using transmission electron microscopy (TEM) and x-ray methods. Hydrides incorporating all of the substitutional solutes that formed during charging have a face-centered cubic (fcc) structure and exhibit either a plate or fine-grained morphology. With increasing hydrogen content, the size of the hydrides decreases and their microchemistry changes as they approach the stable binary hydride, TiH2. Rejection of substitutional solute elements from the hydride produces changes in the microchemistry, and consequently in the crystal structure, of the surrounding matrix. In alloys containing 50 at. % H, this solute redistribution results in the formation of an orthohombic substitutional solid solution phase containing increased levels of Nb. The driving force of this redistribution of solutes is the reduction in the chemical potential of the system as the amount of the most stable hydride, TiH2, forms. The hydrides reverted to a solid solution on annealing in vacuum at 1073 K, and the original microchemistry of the alloy was restored. Reversion from the hydride structure to the original α2 ordered DO19 structure proceeds via a disordered HCP phase.


2021 ◽  
Vol 58 (3) ◽  
pp. 211-248
Author(s):  
James Hagadorn ◽  
Mark Longman ◽  
Richard Bottjer ◽  
Virginia Gent ◽  
Christopher Holm-Denoma ◽  
...  

We formally assign, describe and interpret a principal reference section for the middle Turonian Codell Sandstone Member of the Carlile Shale near Codell, Kansas. This section, at the informally named Pumpjack Road, provides the thickest surface expression (9 m, ~30 ft) of the unit in Ellis County. The outcrop exposes features that typify the Codell throughout the southern Denver Basin and vicinity. At this reference section, the Codell conformably overlies the Blue Hill Shale Member of the Carlile Shale and is unconformably overlain by the Fort Hays Limestone Member of the Niobrara Formation or locally by a thin (<0.9 m, <3 ft) discontinuous mudstone known as the Antonino facies. The top contact of the Codell is slightly undulatory with possible compaction features or narrow (<30.5 m, <100 ft), low-relief (0.3-0.6 m, 1-2 ft) scours, all of which hint that the Codell is a depositional remnant, even at the type section. At Pumpjack Road, the Codell coarsens upward from a recessive-weathering argillaceous medium-grained siltstone with interbedded mudstone at its base to a more indurated cliff-forming muddy, highly bioturbated, very fine-grained sandstone at its top. The unit contains three informal gradational packages: a lower Codell of medium to coarse siltstone and mudstone, a middle Codell of muddy coarse siltstone, and an upper muddy Codell dominated by well-sorted very fine-grained sandstone. The largest grain fractions, all <120 mm in size, are mostly quartz (40-80%), potassium feldspar (7-12%), and albite (1-2%), with some chert (<15%), zircon, and other constituents such as abraded phosphatic skeletal debris. Rare fossil fish teeth and bones also occur. Detrital and authigenic clays make up 9 to 42% of the Codell at the reference section. Detrital illite and mixed layer illite/smectite are common, along with omnipresent kaolinite as grain coatings or cement. As is typical for the Codell, the sandstone at the type section has been pervasively bioturbated. Most primary structures and bedding are obscured, particularly toward the top of the unit where burrows are larger, deeper and more diverse than at its base. This bioturbation has created a textural inversion in which the larger silt and sand grains are very well sorted but are mixed with mud. Detrital zircons from the upper Codell are unusual in that they are mostly prismatic to acicular, euhedral, colorless, unpitted, and unabraded, and have a near-unimodal age peak centered at ~94 Ma. These characteristics suggest they were reworked mainly from Cenomanian bentonites; their ultimate source was likely from the Cordilleran orogenic belt to the west and northwest.


Author(s):  
Hans Tammemagi

Most of the solid waste generated by society ultimately winds up in near-surface landfills. Let us put our thinking caps firmly on, place our prejudices aside, and explore what other methods might be used to dispose of waste. We should seek, in particular, the approaches that best fulfill the three basic principles described in chapter 2. That is, we should strive to find disposal methods that are in accord with sustainable development. Existing and abandoned pits, quarries, and mines are attractive for waste disposal because a hole to contain the wastes has already been excavated. Such abandoned areas, when left unreclaimed, cannot be used for agriculture or other beneficial uses. Thus, they generally do not have significant market value and can often be obtained relatively cheaply. For these reasons, pits and quarries have been extensively used for landfills. Operating and abandoned mines, on which this section focuses, are somewhat similar to pits and quarries, though usually larger. Abandoned mines hold promise as disposal facilities because they are resource areas that have been depleted and thus have little future value. There are two basic types of mine: the open pit mine, which is effectively a large pit or hole in the ground; and the underground mine, where the mined-out openings are deep underground and there is no surface expression except for the shafts used to gain subsurface access. Because underground mines occupy minimal surface land, their use for waste disposal would be in accordance with the sustainable development principles that were advocated in chapter 2. Several European countries, with higher population densities and much smaller land mass than in North America, have long used abandoned underground mines to dispose of their rubbish. The major advantage of placing wastes deep in underground mines is that it is inherently safer than placing the wastes in a surface facility. The amount of groundwater and its flow rate decrease with depth; this fact, combined with the long transport paths back to the biosphere, minimizes the possibility that contaminants will be carried by groundwater to the surface, where they could damage the environment. The waste is contained deeper and more securely.


2005 ◽  
Vol 51 (173) ◽  
pp. 307-312 ◽  
Author(s):  
Sarah B. Das ◽  
Richard B. Alley

AbstractSurface melting rarely occurs across most of the Antarctic ice sheet, away from the warmer coastal regions. Nonetheless, isolated melt features are preserved in the firn and ice in response to infrequent and short-lived melting events. An understanding of the formation and occurrence of these melt layers will help us to interpret records of past melt occurrences from polar ice cores such as the Siple Dome ice-core record from West Antarctica. A search in the near-surface firn in West Antarctica found that melt features are extremely rare, and consist of horizontal, laterally continuous, one to a few millimeter thick, ice layers with few air bubbles. The melt layers found date from the 1992/93 and 1991/92 summers. Field experiments to investigate changes in stratigraphy taking place during melt events reproduced melt features as seen in the natural stratigraphy. Melting conditions of varying intensity were created by passively heating the near-surface air for varying lengths of time inside a clear plastic hotbox. Melt layers formed due entirely to preferential flow and subsequent refreezing of meltwater from the surface into near-surface, fine-grained, crust layers. Continuous melt layers were formed experimentally when positive-degree-day values exceeded 1ºC-day, a value corresponding well with air-temperature records from automatic weather station sites where melt layers formed in the recent past.


1974 ◽  
Vol 13 (68) ◽  
pp. 285-306 ◽  
Author(s):  
P.W. Anderton

Results of petrographic and fabric analysis of fine-grained cold ice from the tongue of Meserve Glacier, Antarctica, are described. Most of the basal ice is remarkably uniform in texture and shows an optic-axis fabric with a single strong maximum, which is consistent with the steady-state conditions of flow. Within 0.5 m of the ice–rock interface, irregularities in the bed cause flow perturbations which are correlated with recrystallization and changes in fabric of the ice. Optic-axis fabrics in the basal ice show close symmetry relationships with dimensional fabric and deformation symmetry. Grain-size of the ice increases towards the surface of the glacier and the single maximum of the optic-axis fabric undergoes a rotation about the flow vector. In the near surface, where strain-rates are relatively much lower, the optic-axis fabric symmetry is not closely related to either deformation symmetry or the dimensional fabric. Syntectonic recrystallization of ice throughout the glacier tongue characteristically produces a strong single-maximum fabric, the orientation of which in relation to the stress field is apparently determined by stress level. Under steady-state conditions of flow, the strength of the maximum also appears to be a function of stress level.


Geophysics ◽  
1975 ◽  
Vol 40 (4) ◽  
pp. 641-656 ◽  
Author(s):  
P. Hoekstra ◽  
P. V. Sellmann ◽  
A. Delaney

In permafrost regions investigations for such geotechnical endeavors as route selection for roads and pipelines and site investigations for buildings and dam construction often require that a careful assessment be made of the presence or absence of frozen ground, of the ice content of frozen ground, and of the depth of frozen ground. In the vicinity of Fairbanks, Alaska, where the permafrost is discontinuous, ground and airborne methods of mapping electrical resistivity using radiowaves were tested as means of delineating permafrost. When the resistivity maps are compared with surficial geological data, the following conclusions are reached: (1) In areas of fine‐grained sediments, where the near surface sediments are relatively uniform, VLF resistivity delineates permafrost. (2) In areas where surface sediments vary widely (flood plains), VLF resistivity shows little information on permafrost conditions but can provide other important geotechnical information, such as, depth to bedrock, surface soil type, and layering. Comparison of the apparent resistivity derived from a surface impedance measurement at VLF on the ground with the apparent resistivity derived from an airborne measurement of wavetilt shows that the regional trends in the data agree, but the surface impedance measurements show much more local detail in ground conditions. When the surface layers are also frozen, the surface impedance method of measuring ground resistivity was found to have distinct advantages over conventional galvanic methods in terms of production and problems associated with probe contact resistance.


2012 ◽  
Vol 1444 ◽  
Author(s):  
S.V. Stefanovsky ◽  
A.A. Shiryaev ◽  
I.E. Vlasova ◽  
V.O. Yapaskurt ◽  
J.C. Marra

ABSTRACTTwo LaBS glasses containing 9.5 wt.% (#1) and 5.0 wt.% PuO2 (#2) were prepared by melting in Pt ampoules at 1500 C and examined by scanning electron microscopy with energy dispersive X-ray spectroscopy. The bulk of sample #1, both as-prepared and stored for 3 yrs, was amorphous with homogeneous PuO2 distribution. Sample #2, especially after storage for 2-3 yrs, was partly devitrified primarily in the near-surface area. As followed from X-ray elemental maps, the vitreous phase was enriched with Al and Si whereas larger elongated and smaller dendrite crystals strongly enriched with rare earths (La, Nd, Gd) and Si and minor amounts of Hf may be attributed to britholite. A minor concentration of Pu was also observed in this phase. Moreover, relatively minor amounts of white regular crystals with high PuO2 and lower HfO2 contents were observed in the samples and are probably associated with PuO2 and a PuO2-HfO2 cubic solid solution phase. Nevertheless, even in devitrified areas of the samples, the majority of the Pu remained in the vitreous phase where it was homogeneously distributed.


Geophysics ◽  
1977 ◽  
Vol 42 (1) ◽  
pp. 17-33 ◽  
Author(s):  
Jim Combs ◽  
David Hadley

Microearthquakes associated with the Mesa geothermal anomaly were recorded for five weeks during the summer of 1973 using an array of six portable, high‐gain seismographs equipped with vertical‐component 1-sec natural period seismometers. Background seismicity of the area is thus determined prior to development for geothermal power and water. The local seismicity changed considerably over the recording period. Most daily activity was characterized by only one or two potentially locatable events, while two microearthquake swarms of two‐ and three‐day duration included as many as 100 or more distinct local events per day. Hundreds of small events (nanoearthquakes), some clustered in swarms, were recorded by each seismograph; however, most were not detected on four or more seismograms so that hypocentral locations usually could not be determined. Locations were determined for 36 microearthquakes having epicenters situated in the [Formula: see text] areal extent of the geothermal anomaly. Focal depths ranged from near‐surface to about 8 km. More than half of the located events have hypocenters greater than the 4.0 km which is approximately the depth to crystalline basement. Stress associated with the Mesa geothermal anomaly is relieved by a combination of continuous microseismic activity and intermittent microearthquake swarms. Based on the results of the present study, a new right‐lateral strike‐slip fault, the Mesa fault, was defined. First motion studies indicate strike‐slip faulting although there is no surface expression of the fault. The northwest‐southeast trending Mesa fault is an active fault functioning as a conduit for rising geothermal fluids of the Mesa geothermal anomaly. This investigation is another demonstration that geothermal areas are characterized by enhanced microearthquake activity.


Sign in / Sign up

Export Citation Format

Share Document