Cognate recognition of the endothelium induces HY-specific CD8+ T-lymphocyte transendothelial migration (diapedesis) in vivo

Blood ◽  
2004 ◽  
Vol 103 (8) ◽  
pp. 3111-3116 ◽  
Author(s):  
Federica M. Marelli-Berg ◽  
Martha J. James ◽  
John Dangerfield ◽  
Julian Dyson ◽  
Maggie Millrain ◽  
...  

Abstract The physiologic significance of MHC-peptide complex presentation by endothelial cells (ECs) to trafficking T lymphocytes remains unresolved. On the basis of our observation that cognate recognition of ECs enhanced transendothelial migration of antigen-specific T lymphocytes in vitro, we have proposed that by displaying antigenic peptides from the underlying tissue, ECs promote the recruitment of antigen-specific T cells. In this study, we have tested this hypothesis by comparing the trafficking of HY-specific T lymphocytes into antigenic and nonantigenic tissue using in vivo models of T-cell recruitment. Up-regulated expression of H2 molecules presenting endogenous antigen in the peritoneal mesothelium and vessels led to the local recruitment of HY-specific T cells in male, but not female, mice. Intravital microscopy experiments analyzing EC–HY-specific T-cell interactions in the cremasteric vascular bed revealed that cognate recognition of the endothelium results in enhanced diapedesis of T cells into the tissue, while not affecting rolling and adhesion. Our results are consistent with the hypothesis that, under inflammatory conditions, antigen presentation by the endothelium contributes to the development and specificity of T-cell–mediated inflammation by favoring the selective migration of antigen-specific T cells. (Blood. 2004;103:3111-3116)

Blood ◽  
2009 ◽  
Vol 113 (24) ◽  
pp. 6138-6147 ◽  
Author(s):  
Audrey Gérard ◽  
Rob A. van der Kammen ◽  
Hans Janssen ◽  
Saskia I. Ellenbroek ◽  
John G. Collard

Abstract Migration toward chemoattractants is a hallmark of T-cell trafficking and is essential to produce an efficient immune response. Here, we have analyzed the function of the Rac activator Tiam1 in the control of T-cell trafficking and transendothelial migration. We found that Tiam1 is required for chemokine- and S1P-induced Rac activation and subsequent cell migration. As a result, Tiam1-deficient T cells show reduced chemotaxis in vitro, and impaired homing, egress, and contact hypersensitivity in vivo. Analysis of the T-cell transendothelial migration cascade revealed that PKCζ/Tiam1/Rac signaling is dispensable for T-cell arrest but is essential for the stabilization of polarization and efficient crawling of T cells on endothelial cells. T cells that lack Tiam1 predominantly transmigrate through individual endothelial cells (transcellular migration) rather than at endothelial junctions (paracellular migration), suggesting that T cells are able to change their route of transendothelial migration according to their polarization status and crawling capacity.


2021 ◽  
Vol 9 (7) ◽  
pp. e002503
Author(s):  
Miok Kim ◽  
Yong Ki Min ◽  
Jinho Jang ◽  
Hyejin Park ◽  
Semin Lee ◽  
...  

BackgroundAlthough cancer immunotherapy is one of the most effective advanced-stage cancer therapies, no clinically approved cancer immunotherapies currently exist for colorectal cancer (CRC). Recently, programmed cell death protein 1 (PD-1) blockade has exhibited clinical benefits according to ongoing clinical trials. However, ongoing clinical trials for cancer immunotherapies are focused on PD-1 signaling inhibitors such as pembrolizumab, nivolumab, and atezolizumab. In this study, we focused on revealing the distinct response mechanism for the potent CD73 ectoenzyme selective inhibitor AB680 as a promising drug candidate that functions by blocking tumorigenic ATP/adenosine signaling in comparison to current therapeutics that block PD-1 to assess the value of this drug as a novel immunotherapy for CRC.MethodsTo understand the distinct mechanism of AB680 in comparison to that of a neutralizing antibody against murine PD-1 used as a PD-1 blocker, we performed single-cell RNA sequencing of CD45+ tumor-infiltrating lymphocytes from untreated controls (n=3) and from AB680-treated (n=3) and PD-1-blockade-treated murine CRC in vivo models. We also used flow cytometry, Azoxymethane (AOM)/Dextran Sulfate Sodium (DSS) models, and in vitro functional assays to validate our new findings.ResultsWe initially observed that the expressions of Nt5e (a gene for CD73) and Entpd1 (a gene for CD39) affect T cell receptor (TCR) diversity and transcriptional profiles of T cells, thus suggesting their critical roles in T cell exhaustion within tumor. Importantly, PD-1 blockade significantly increased the TCR diversity of Entpd1-negative T cells and Pdcd1-positive T cells. Additionally, we determined that AB680 improved the anticancer functions of immunosuppressed cells such as Treg and exhausted T cells, while the PD-1 blocker quantitatively reduced Malat1high Treg and M2 macrophages. We also verified that PD-1 blockade induced Treg depletion in AOM/DSS CRC in vivo models, and we confirmed that AB680 treatment caused increased activation of CD8+ T cells using an in vitro T cell assay.ConclusionsThe intratumoral immunomodulation of CD73 inhibition is distinct from PD-1 inhibition and exhibits potential as a novel anticancer immunotherapy for CRC, possibly through a synergistic effect when combined with PD-1 blocker treatments. This study may contribute to the ongoing development of anticancer immunotherapies targeting refractory CRC.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Wei Chen ◽  
Xianying Fang ◽  
Yuan Gao ◽  
Ke Shi ◽  
Lijun Sun ◽  
...  

Abstract Background T lymphocytes play an important role in contact hypersensitivity. This study aims to explore the immunosuppressive activity of SBF-1, an analog of saponin OSW-1, against T lymphocytes in vitro and in vivo. Methods Proliferation of T lymphocytes from lymph nodes of mice was determined by MTT assay. Flow cytometry analysis was performed to assess T cell activation and apoptosis. Levels of cytokines were determined by PCR and ELISA. BALB/c mice were sensitized and challenged with picryl chloride and thickness of left and right ears were measured. Results SBF-1 effectively inhibited T lymphocytes proliferation induced by concanavalin A (Con A) or anti-CD3 plus anti-CD28 at a very low dose (10 nM) but exhibited little toxicity in non-activated T lymphocytes at concentrations up to 10 μM. In addition, SBF-1 inhibited the expression of CD25 and CD69, as well as he phosphorylation of AKT in Con A-activated T cells. SBF-1 also induced apoptosis of activated T cells. In addition, SBF-1 also downregulated the induction of the T cell cytokines, IL-2 and IFN-γ in a dose-dependent manner. Furthermore, SBF-1 significantly suppressed ear swelling and inflammation in a mouse model of picryl chloride-induced contact hypersensitivity. Conclusions Our findings suggest that SBF-1 has an unique immunosuppressive activity both in vitro and in vivo mainly through inhibiting T cell proliferation and activation. Its mechanism appears to be related to the blockage of AKT signaling pathway.


1980 ◽  
Vol 152 (4) ◽  
pp. 823-841 ◽  
Author(s):  
E Fernandez-Cruz ◽  
B A Woda ◽  
J D Feldman

Established subcutaneous Moloney sarcomas (MST-1) of large size and long duration were eliminated from syngeneic rats by intravenous infusion of varying numbers of specific syngeneic effector T lymphocytes. Spleen cells from BN rats in which tumor had regressed were cultured in an in vitro mixed lymphocyte tumor cell culture (MLTC) to augment cytotoxicity of effector cells. In the MLTC a T cell subset was expanded in response to MST-1 antigens and transformed into blast elements. With these changes, there was an increase in the W3/25 antigen on the T cell surface, a decrease of W3/13 antigen, and an increase in the number of T cells with Ia antigens. The subset associated with elimination of established tumors was a blast T cell W3/25+, W3/13+, as detected by monoclonal antibodies to rat T antigens. The W3/25+ subset was poorly cytotoxic in vitro for MST-1 and apparently functioned in vivo as an amplifier or helper cell in the tumor-bearing host. The W3/25- population was a melange of cells that included (W3/13+, W3/25-) T cells, null cells, Ig+ cells, and macrophages, and was associated with enhancement of tumor in vivo, suggesting the presence of suppressor cells.


Blood ◽  
2008 ◽  
Vol 112 (4) ◽  
pp. 1280-1289 ◽  
Author(s):  
Michael Stefanidakis ◽  
Gail Newton ◽  
Winston Y. Lee ◽  
Charles A. Parkos ◽  
Francis W. Luscinskas

Abstract Leukocyte transendothelial migration (TEM) is a critical event during inflammation. CD47 has been implicated in myeloid cell migration across endothelium and epithelium. CD47 binds to signal regulatory protein (SIRP), SIRPα and SIRPγ. So far, little is known about the role of endothelial CD47 in T-cell TEM in vivo or under flow conditions in vitro. Fluorescence-activated cell sorting and biochemical analysis show that CD3+ T cells express SIRPγ but not SIRPα, and fluorescence microscopy showed that CD47 was enriched at endothelial junctions. These expression patterns suggested that CD47 plays a role in T-cell TEM through binding interactions with SIRPγ. We tested, therefore, whether CD47-SIRPγ interactions affect T-cell transmigration using blocking mAb against CD47 or SIRPγ in an in vitro flow model. These antibodies inhibited T-cell TEM by 70% plus or minus 6% and 82% plus or minus 1%, respectively, but had no effect on adhesion. In agreement with human mAb studies, transmigration of murine wild-type T helper type 1 cells across TNF-α–activated murine CD47−/− endothelium was reduced by 75% plus or minus 2% even though murine T cells appear to lack SIRPγ. Nonetheless, these findings suggest endothelial cell CD47 interacting with T-cell ligands, such as SIRPγ, play an important role in T-cell transendothelial migration.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3553-3553
Author(s):  
Attilio Bondanza ◽  
Lothar Hambach ◽  
Zohara Aghai ◽  
Monica Casucci ◽  
Bart Nijmeijer ◽  
...  

Abstract Abstract 3553 Poster Board III-490 Introduction Minor histocompatibility antigens (mHag) play a major role in the graft-versus-leukemia (GvL) effect following HLA-matched allogeneic hemopoietic cell transplantation (allo-HCT). Clinically, the GvL effect coincides with the emergence of mHag-specific CD8+ cytotoxic T lymphocytes (CTL). Experimentally, targeting a single mHag with human CD8+ CTL has a major anti-leukemia effect in NOD/scid mice. Altogether, these observations suggest that mHag-specific cytotoxicity by CD8+ T cells is an important component of the GvL effect. In contrast, little is known on the contribution of mHag-specific CD4+ T cells. Female-to-male allo-HCT is characterized by a low rate of leukemia relapse, indicating that H-Y-encoded mHag are potent leukemia-regression antigens. Earlier, we described a DRB3*0301-restricted H-Y mHag epitope inducing CD4+ helper T-cell responses in H-Y-mismatched HLA-matched allo-HCT. Aim: The aim of this study is to elucidate the role of mHag-specific human CD4+ T lymphocytes on the GvL effect. Methods The ALL-CM leukemia cell line, derived from a male (i.e. H-Y+) HLA-A0201+, DRB30301+ patient, reproducibly engrafts in NOD/scid mice after administration of 10×106 cells. Both an HLA-A0201-restricted H-Y-specific CD8+ CTL clone and the DRB30301-restricted H-Y-specific CD4+ helper T-cell clone that we earlier described were used to investigate the anti-leukemia efficacy of CD8+ and CD4+ T cells in NOD/scid mice. Results In vitro, the CD8+ H-Y specific CTL clone was highly cytotoxic against the ALL-CM leukemia. The H-Y specific CD4+ helper T-cell clone did not lyse the leukemia, but produced IFN-γ upon recognition. Infusion of the H-Y-specific CD8+ CTL clone (25×106 cells/mouse) 3 days after ALL-CM leukemia challenge significantly delayed leukemia progression by 3 weeks compared to a CMV-specific CD8+ CTL control clone (p<0,001). Despite no measurable in vitro cytotoxicity, the H-Y-specific CD4+ helper T-cell clone (25×106 cells/mouse) delayed leukemia progression by 2 weeks compared to a leukemia non-reactive HLA-DR1-specific CD4+ helper T-cell control clone (p<0,001). In vitro co-incubation of the H-Y-specific CD4+ helper T-cell clone did not influence leukemia proliferation but induced up-regulation of MHC-class I and II, CD80, CD86 and CD40. In vitro, pre-incubation of leukemia cells with the H-Y-specific CD4+ helper T-cell clone irradiated did not improve the in vivo anti-leukemia efficacy of the H-Y-specific CD8+ CTL clone. Co-infusion of the H-Y specific CD4+ helper T-cell clone did not augment the in vivo persistence of the H-Y-specific CD8+ CTL T-cell clone. Nevertheless, the co-infusion resulted in a delay in leukemia progression of approximately 5 weeks, suggesting an additive, non overlapping anti-leukemia mechanism. Conclusions Minor Hag-specific human CD4+ T lymphocytes may contribute to the GvL effect through a direct, non cytotoxic mechanism, which could be additive to that of CD8+ CTL. The nature of this non cytotoxic GvL effect is currently under investigation. A.B. and L.H. equally contributed to this study. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3771-3771
Author(s):  
Jae H. Park ◽  
Raymond Yeh ◽  
Isabelle Rivière ◽  
Michel Sadelain ◽  
Renier J. Brentjens

Abstract Abstract 3771 Adoptive infusion of T cells genetically modified to express chimeric antigen receptors (CARs) targeted to tumor associated antigens (TAAs) is a promising approach to cancer therapy. However, since TAAs are often expressed by normal tissues, safeguards are needed in the form of additional transduced suicide genes to allow for the efficient in vivo abrogation of infused T cells in case of unanticipated adverse events which may develop in the clinical setting. To this end, we have investigated the in vitro function of 3 different suicide genes each inserted distal to a CAR gene targeted against CD19 (19-28z) and a 2A linker peptide cloned into the SFG gammaretroviral vector. Specifically, we have tested the herpes simplex virus thymidine kinase (HSV-TK SR39) with the prodrug ganciclovir, inducible caspase 9 (iCasp9) with the chemical inducer of dimerization (CID), and the E.coli derived nitroreductase (NTR) with the prodrug metronidazole. Cell growth of PG13 murine fibroblasts transduced to express 19–28z CAR with NTR, HSV-TK, and iCasp9 was inhibited by 80% at 1mM of metronidazole, 85% at 1μM of ganciclovir, and 90% at 10nM of CID, respectively, when compared to control PG-13 fibroblasts. The drug concentrations tested in these assays were at physiologically achievable concentrations in humans, and did not affect the growth rate of control PG13 fibroblasts. Consistent with these findings in PG13 fibroblasts, we found that human T cells transduced with either 1928z.2A.NTR or 1928z.2A.HSV-TK demonstrated 90% and 88% inhibition, respectively, at similar substrate concentrations. Furthermore, we demonstrate that expression of these suicide genes does not affect the phenotype or function of the 19–28z CAR+ T cells, as assessed in vitro by T cell proliferation and cytotoxicity against CD19-expressing tumor cells. Our studies demonstrate highly effective suicide genes for human T lymphocytes transduced with a tumor targeted CAR, and a novel suicide gene/prodrug (NTR/metronidazole) combination with a comparable efficacy that can potentially serve as a reliable safety mechanism for adoptive T cell immunotherapy. While HSV-TK/ganciclovir has been utilized in various clinical settings, the NTR suicide gene has yet to be used in combination with gene modified tumor-targeted T cells. Furthermore, the NTR suicide gene holds several advantages over the HSV-TK and iCasp9 vectors. First, unlike HSV-TK, the NTR suicide gene is effective in both proliferating and non-proliferating cells. Second, unlike CID that is not commercially available, metronidazole is a widely available antibiotic that is relatively non-toxic. Lastly, metronidazole can be used in patients who may already be taking ganciclovir for cytomegalovirus (CMV) prophylaxis or treatment therefore limiting the application of T cells modified to express the HSV-TK suicide gene. Based on this in vitro data, we are currently testing the function of this suicide gene in vivo in two different animal models. Ultimately we anticipate that further studies with this novel suicide gene/prodrug combination will allow us to enhance safety in future clinical trials utilizing gene modified tumor targeted T cells. Disclosures: No relevant conflicts of interest to declare.


Viruses ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 639 ◽  
Author(s):  
Younghyun Lim ◽  
Seyoung Kim ◽  
Sehoon Kim ◽  
Dong-In Kim ◽  
Kyung Won Kang ◽  
...  

The immune-suppressive effects of omega-3 (n-3) polyunsaturated fatty acids (PUFAs) on T cells have been observed via multiple in vitro and in vivo models. However, the precise mechanism that causes these effects is still undefined. In this study, we investigated whether n-3 PUFAs regulated T cell receptor (TCR) and peptide-major histocompatibility complex (pMHC) interactions. The expansion of anti-viral CD8+ T cells that endogenously synthesize n-3 PUFAs (FAT-1) dramatically decreased upon lymphocytic choriomeningitis virus (LCMV) infection in vivo. This decrease was not caused by the considerable reduction of TCR expression or the impaired chemotactic activity of T cells. Interestingly, a highly inclined and laminated optical sheet (HILO) microscopic analysis revealed that the TCR motility was notably reduced on the surface of the FAT-1 CD8+ T cells compared to the wild type (WT) CD8+ T cells. Importantly, the adhesion strength of the FAT-1 CD8+ T cells to the peptide-MHC was significantly lower than that of the WT CD8+T cells. Consistent with this result, treatment with docosahexaenoic acid (DHA), one type of n-3 PUFA, significantly decreased CD8+ T cell adhesion to the pMHC. Collectively, our results reveal a novel mechanism through which n-3 PUFAs decrease TCR-pMHC interactions by modulating TCR mobility on CD8+ T cell surfaces.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A143-A143
Author(s):  
Jonathan Terrett ◽  
Brigid Mcewan ◽  
Daniel Hostetter ◽  
Luis Gamboa ◽  
Meghna Kuppuraju ◽  
...  

BackgroundCD33 is the most consistently expressed antigen in AML, with high levels and homogeneous expression observed in malignant AML cells from most patients, including those with relapsed disease. Normal myelomonocytic cell lineages and a percentage of hematopoietic progenitors also express CD33, and the extreme myeloablation caused by the CD33-targeted antibody-drug conjugate (ADC) gemtuzumab ozogamicin reinforced concerns about targeting this antigen with more potent agents such as T-cell engaging bispecific antibodies and CAR-T cells. We have shown previously that allogeneic CRISPR/Cas9 gene-edited CAR-T cells targeting CD33 with TRAC disruption to reduce GvHD and B2M disruption to reduce allogeneic host rejection could eliminate tumors in xenograft models of AMLMethodsGiven that off-target activity of the toxin could contribute to the myeloablation seen with CD33-targeted ADCs, we created in vitro and in vivo models to examine reconstitution of the myeloid compartment following treatment of CD33-targeted allogeneic CAR-T cells.ResultsAlthough co-culture of CD34+ stem cells in vitro with our CD33-targeted allogeneic CAR-T cells did significantly deplete the cell population, colonies still formed after removal of the CAR-T cells as the presumably CD33-negative stem/progenitor cells expanded and differentiated. A similar phenomenon was observed in vivo with CD34 humanized mice bearing an AML tumor (THP-1 cells) and treated with the CD33-targeted allogeneic CAR-T cells. The CAR-T cells completely eradicated the THP-1 tumor but did not lead to long-term myelosuppression or B cell aplasia.ConclusionsThus, allogeneic CRISPR/Cas9 multiplex gene-edited CD33-targeted CAR-T cell therapy may be both efficacious and tolerable in AML.


2021 ◽  
Vol 118 (25) ◽  
pp. e2023752118
Author(s):  
David O’Sullivan ◽  
Michal A. Stanczak ◽  
Matteo Villa ◽  
Franziska M. Uhl ◽  
Mauro Corrado ◽  
...  

Fever can provide a survival advantage during infection. Metabolic processes are sensitive to environmental conditions, but the effect of fever on T cell metabolism is not well characterized. We show that in activated CD8+ T cells, exposure to febrile temperature (39 °C) augmented metabolic activity and T cell effector functions, despite having a limited effect on proliferation or activation marker expression. Transcriptional profiling revealed an up-regulation of mitochondrial pathways, which was consistent with increased mass and metabolism observed in T cells exposed to 39 °C. Through in vitro and in vivo models, we determined that mitochondrial translation is integral to the enhanced metabolic activity and function of CD8+ T cells exposed to febrile temperature. Transiently exposing donor lymphocytes to 39 °C prior to infusion in a myeloid leukemia mouse model conferred enhanced therapeutic efficacy, raising the possibility that exposure of T cells to febrile temperatures could have clinical potential.


Sign in / Sign up

Export Citation Format

Share Document