scholarly journals A specific role of integrin Mac-1 in accelerated macrophage efflux to the lymphatics

Blood ◽  
2005 ◽  
Vol 106 (9) ◽  
pp. 3234-3241 ◽  
Author(s):  
Chunzhang Cao ◽  
Daniel A. Lawrence ◽  
Dudley K. Strickland ◽  
Li Zhang

Abstract In response to injury, monocytes migrate to the site of inflammation, where they differentiate into macrophages and participate in various biologic processes. However, their fate during the resolution of acute inflammation is not fully understood. Here, we show that inflammatory macrophages do not die locally by apoptosis; rather, they migrate across the peritoneal mesothelium to the lymphatics, through which they further migrate to the lymph nodes and to the blood circulation. Macrophage efflux is enhanced considerably on cell activation, and such accelerated macrophage migration is dependent specifically on integrin Mac-1, and can be blocked by addition of its antagonist. Thus, genetic inactivation of Mac-1 in mice inhibits the accelerated macrophage efflux from the inflammatory site to the lymphatics, but it does not compromise the accumulation of blood monocytes into the inflammatory site. Together, our study demonstrates that Mac-1 is involved specifically in the efflux of activated macrophages to the lymphatics, suggesting that Mac-1 may play an important role in the removal of local inflammatory macrophages and in their subsequent migration to the lymph nodes, a process that is critical to the development of the adaptive immunity.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3600-3600 ◽  
Author(s):  
Yevgeniya Kushchayeva ◽  
Darya Mishchuk ◽  
Tatiana Ugarova

Abstract Abstract 3600 Poster Board III-537 The mobilization of blood monocytes and their differentiation into macrophages during the immune-inflammatory response helps to prepare the tissue for resolution. During the resolution phase of inflammation macrophages do not die locally: some cells emigrate by draining lymphatics whereas some remain at the site of inflammation. The major myelo-monocytic integrin αMβ2 (Mac-1, CD11b/CD18), together with two related integrins αDβ2 (CD11d/CD18) and αXβ2 (CD11c/CD18), mediate critical adhesive reactions of monocyte/macrophages. However, the roles of these adhesion receptors in control of macrophage retention at sites of inflammation and their emigration to lymph nodes are unclear. Using a mouse model of sterile peritonitis induced by thioglycollate injection, we examined the dynamics of macrophage β2 integrins during the resolution phase of inflammation. Macrophages were defined by FACS analyses as a population of cells expressing αMβ2high, αDβ2+ and CD115+. The initial population of resident β2, positive for βDβ2 and negative for αXβ2. The thioglycollate-challenged mice showed a ∼4-fold increase in macrophages on day 3 followed by a progressive decrease to normal resident cell numbers by day 13. Expression of αMβ2 on macrophages on day 3 decreased by 2.5-fold as a result of dilution of the initial population of αMβ2high resident macrophages by infiltrating blood monocytes expressing αMβ2low. However, after day 3, the density of αMβ2 on macrophages gradually increased and by day 13 returned to the high levels characteristic of resident macrophages. By contrast, expression of αDβ2 and αXβ2 on inflammatory macrophages increased by 2-fold by day 6-9 compared to that on resident macrophages and then returned to the resident levels by day 3. Thus, although the number of macrophages decreased from day 3 to day 9 by several fold, the population of macrophages which remained in the peritoneum was enriched in cells expressing the high levels of αMβ2 and αDα2. Tracking migration of fluorescently labeled peritoneal cells demonstrated that a population of macrophages which leaves the inflamed peritoneum and enters lymph nodes consists of cells expressing low levels of αMβ2 and αDβ2. These data suggested that upregulation of β2 integrins, especially αMβ2, may be responsible for the retention of macrophages in the peritoneum. Indeed, the rate of macrophage emigration from the peritoneum in the αMβ2-deficient mice was significantly higher than that in wild-type mice. The results indicate that macrophage emigration from the inflamed site is controlled by the level of integrin αMβ2 and αDβ2 with low expressors being migratory and high expressors remaining in the peritoneum. The data also highlight the importance of integrins αDβ2 and αXβ2 as specific markers of inflammatory macrophages. Disclosures: No relevant conflicts of interest to declare.


1998 ◽  
Vol 66 (5) ◽  
pp. 2319-2322 ◽  
Author(s):  
YuanGuang Lin ◽  
JianHua Gong ◽  
Ming Zhang ◽  
Wanfen Xue ◽  
Peter F. Barnes

ABSTRACT To investigate the role of monocyte chemoattractant protein 1 (MCP-1) in the immune response to Mycobacterium tuberculosis, we studied MCP-1 production in tuberculosis patients. CD14+ blood monocytes from tuberculosis patients spontaneously expressed higher levels of MCP-1 mRNA and protein than CD14+ monocytes from healthy tuberculin reactors. MCP-1 production in lymph nodes from tuberculosis patients was also markedly increased. These findings suggest that MCP-1 can contribute to the antimycobacterial inflammatory response by attracting monocytes and T lymphocytes.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jisun So ◽  
Albert K. Tai ◽  
Alice H. Lichtenstein ◽  
Dayong Wu ◽  
Stefania Lamon-Fava

AbstractSexual dimorphism in the immune system is evidenced by a higher prevalence of autoimmune diseases in women and higher susceptibility to infectious diseases in men. However, the molecular basis of these sex-based differences is not fully understood. We have characterized the transcriptome profiles of peripheral blood monocytes from males and postmenopausal females with chronic low-grade inflammation. We identified 41 sexually differentially expressed genes [adjusted p value (FDR) < 0.1], including genes involved in immune cell activation (e.g., CEACAM1, FCGR2B, and SLAMF7) and antigen presentation (e.g., AIM2, CD1E, and UBA1) with a higher expression in females than males. Moreover, signaling pathways of immune or inflammatory responses, including interferon (IFN) signaling [z-score = 2.45, -log(p) = 3.88], were found to be more upregulated in female versus male monocytes, based on a set of genes exhibiting sex-biased expression (p < 0.03). The contribution of IFN signaling to the sexual transcriptional differences was further confirmed by direct comparisons of the monocyte sex-biased genes with IFN signature genes (ISGs) that were previously curated in mouse macrophages. ISGs showed a greater overlap with female-biased genes than male-biased genes and a higher overall expression in female than male monocytes, particularly for the genes of antiviral and inflammatory responses to IFN. Given the role of IFN in immune defense and autoimmunity, our results suggest that sexual dimorphism in immune functions may be associated with more priming of innate immune pathways in female than male monocytes. These findings highlight the role of sex on the human immune transcriptome.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Tarfa Altorki ◽  
Werner Muller ◽  
Andrew Brass ◽  
Sheena Cruickshank

Abstract Background Dendritic cells (DCs) play a key role in shaping T cell responses. To do this, DCs must be able to migrate to the site of the infection and the lymph nodes to prime T cells and initiate the appropriate immune response. Integrins such as β2 integrin play a key role in leukocyte adhesion, migration, and cell activation. However, the role of β2 integrin in DC migration and function in the context of infection-induced inflammation in the gut is not well understood. This study looked at the role of β2 integrin in DC migration and function during infection with the nematode worm Trichuris muris. Itgb2tm1Bay mice lacking functional β2 integrin and WT littermate controls were infected with T. muris and the response to infection and kinetics of the DC response was assessed. Results In infection, the lack of functional β2 integrin significantly reduced DC migration to the site of infection but not the lymph nodes. The lack of functional β2 integrin did not negatively impact T cell activation in response to T. muris infection. Conclusions This data suggests that β2 integrins are important in DC recruitment to the infection site potentially impacting the initiation of innate immunity but is dispensible for DC migration to lymph nodes and T cell priming in the context of T. muris infection.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sina Tadayon ◽  
Johannes Dunkel ◽  
Akira Takeda ◽  
Dominik Eichin ◽  
Reetta Virtakoivu ◽  
...  

Clever-1 also known as Stabilin-1 and FEEL-1 is a scavenger molecule expressed on a subpopulation of anti-inflammatory macrophages and lymphatic endothelial cells (LECs). However, its role in regulating dendritic cell (DC) trafficking and subsequent effects on immunity have remained unexplored. In this study, we demonstrate that DC trafficking from the skin into the draining lymph nodes is compromised in the absence of Clever-1. By adoptive transfer approaches we further show that the poor trafficking is due to the impaired entrance of DCs into afferent lymphatics. Despite this, injections of ovalbumin-loaded DCs into the footpads induced a stronger proliferative response of OT II T cells in the draining lymph nodes. This could be explained by the increased MHC II expression on DCs and a less tolerogenic phenotype of LECs in lymph nodes of Clever-1 knockout mice. Thus, although fewer DCs reach the nodes, they are more active in creating antigen-specific immune responses. This suggests that the DCs migrating to the draining lymph node within Clever-1 positive lymphatics experience immunosuppressive interactions with LECs. In conclusion, besides being a trafficking molecule on lymphatic vasculature Clever-1 is immunosuppressive towards migrating DCs and thus, regulates the magnitude of immune responses created by incoming DCs in the draining lymph nodes.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kim M. van Pul ◽  
Marieke F. Fransen ◽  
Rieneke van de Ven ◽  
Tanja D. de Gruijl

Immune checkpoint blockade (ICB) has changed the therapeutic landscape of oncology but its impact is limited by primary or secondary resistance. ICB resistance has been related to a lack of T cells infiltrating into the tumor. Strategies to overcome this hurdle have so far focused on the tumor microenvironment, but have mostly overlooked the role of tumor-draining lymph nodes (TDLN). Whereas for CTLA-4 blockade TDLN have long since been implicated due to its perceived mechanism-of-action involving T cell priming, only recently has evidence been emerging showing TDLN to be vital for the efficacy of PD-1 blockade as well. TDLN are targeted by developing tumors to create an immune suppressed pre-metastatic niche which can lead to priming of dysfunctional antitumor T cells. In this review, we will discuss the evidence that therapeutic targeting of TDLN may ensure sufficient antitumor T cell activation and subsequent tumor infiltration to facilitate effective ICB. Indeed, waves of tumor-specific, proliferating stem cell-like, or progenitor exhausted T cells, either newly primed or reinvigorated in TDLN, are vital for PD-1 blockade efficacy. Both tumor-derived migratory dendritic cell (DC) subsets and DC subsets residing in TDLN, and an interplay between them, have been implicated in the induction of these T cells, their imprinting for homing and subsequent tumor control. We propose that therapeutic approaches, involving local delivery of immune modulatory agents for optimal access to TDLN, aimed at overcoming hampered DC activation, will enable ICB by promoting T cell recruitment to the tumor, both in early and in advanced stages of cancer.


Sign in / Sign up

Export Citation Format

Share Document