Protection from CMV infection in immunodeficient hosts by adoptive transfer of memory B cells

Blood ◽  
2007 ◽  
Vol 110 (9) ◽  
pp. 3472-3479 ◽  
Author(s):  
Karin Klenovsek ◽  
Florian Weisel ◽  
Andrea Schneider ◽  
Uwe Appelt ◽  
Stipan Jonjic ◽  
...  

AbstractSevere disease associated with cytomegalovirus (CMV) infection is still a major problem in patients who undergo transplantation. Support of the patients' immune defense against the virus is a major goal in transplantation medicine. We have used the murine model of CMV (MCMV) to investigate the potential of a cell-based strategy to support the humoral antiviral immune response. Immunocompetent C57BL/6 mice were infected with MCMV, and memory B cells from the immune animals were adoptively transferred into T-cell– and B-cell–deficient RAG-1−/− mice. Following MCMV infection, a virus-specific IgG response developed within 4 to 7 days in the recipient animals. Concomitantly, a significant reduction in viral titers and DNA copies in several organs was observed. In addition, the memory B-cell transfer provided long-term protection from the lethal course of the infection that is invariably seen in immunodeficient animals. Transfer of memory B cells was also effective in protecting from an already ongoing viral infection, indicating a therapeutic potential of virus-specific memory B cells. T cells were not involved in this process. Our data provide evidence that a cell-based strategy to support the humoral immune response can be effective to combat infectious pathogens in severely immunodeficient hosts.

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 34-35
Author(s):  
Wen Zhu ◽  
Lu Zhou ◽  
Ting Zhao ◽  
Yongwei Zheng ◽  
Mei Yu ◽  
...  

Heparin-induced thrombocytopenia (HIT) is a serious reaction to heparin treatment characterized by antibodies that recognize a complex formed between heparin and platelet factor 4 (PF4/H) and are capable of activating platelets and inducing a pro-thrombotic state. Although a high percentage of heparin-treated patients produce antibodies to PF4/H, only a subset of these antibodies are platelet-activating (pathogenic) and capable of causing HIT. We previously reported that we cloned B cells from six patients experiencing HIT and identified two types of PF4/H-binding antibodies: seven platelet-activating (PA) and 48 non-activating (NA). Comparison of the structural features in the PA, NA, and non PF4/H-binding (NB) clones showed that the length and the number of basic amino acid and tyrosine residue in the heavy chain complementarity determining region 3 (HCDR3) were significantly different, and was in the order of PA>NA>NB. Most significantly, the seven platelet-activating antibodies each have one of the two pathogenic motifs: RX1-2 R/KX1-2 R/H and YYYYY in an unusually long HCDR3 (≥ 20 residues). In the current study, we attempt to understand the origin of the B cells that produce the PA and NA antibodies and the nature of the immune response in HIT through analyzing somatic hypermutation and biological property of such antibodies. Longer HCDR3 and more basic Aas and Tyr residues in the HCDR3 are features of autoreactive and polyreactive antibodies. With this in mind, we tested PA and NA clones in a standard antinuclear antibody (ANA) assay and found that these clones were significantly more reactive than NB antibodies, and the plasma of HIT patients were significantly more reactive than normal plasma (Figure1). We then compared reactions of PA, NA and NB clones against a group of self and foreign antigens commonly used in polyreactivity assays: dsDNA, ssDNA, LPS, insulin, and keyhole limpet hemocyanin (KLH). About 90% of PA and NA clones were reactive to at least two antigens, this was true of only 20% of the NB clones, and the latter is consistent with the frequency of polyreactive clones in the IgG+ B cells (Figure2). Taken together, these data indicate that PA and NA antibodies are largely polyreactive. We then investigated the development of the PA and NA B cells through analyzing somatic hypermutation in the antibodies. Through analyzing the HCDR3 nucleotide insertion, trimming and VDJ segment usage, we found that longer HCDR3 typical of PF4/H-binding clones and the RKH and Y5 motifs identified in PA clones were the result of original recombination not somatic hypermutation. Consistently, the average number of nucleotide mutations in the VH genes of the binding clones was lower (PA and NA, 9.4 ± 9.5) compared to that of peripheral blood IgG+ memory B cells in healthy subjects (~18) (Figure3). Total mutation frequency in the VH and Vk CDRs of the PF4/H-binding PA and NA clones was comparable to that of the framework regions. This finding contrasts with findings made in peripheral blood IgG+ memory B cells of healthy subjects showing that the mutation frequencies are much higher in the CDRs than in the FRs of VH. Taken together, these findings suggest that affinity maturation plays a limited role in the evolution PF4/H-binding antibodies during the immune response that leads to HIT. In this study, we showed thay PF4/H-binding PA and NA IgGs are largely polyreactive antibodies and contain lower levels of mutations compared to IgG+ memory B cells. B1 and MZ B cells are innate B cells that are main producers of polyreactive natural antibodies and can respond to toll-like receptor signaling, quickly differentiate into antibody-secreting cells, and undergo IgG class switch extrafollicularly. Polyreactivity identified in the PF4/H-binding PA and NA IgGs supports the possibility that human B cells producing PF4/H-binding antibodies are innate B cells akin to MZ B cells shown to be a source of PF4/H antibodies in mice. A mutation rate lower than that of IgG+ memory cells in the PF4/H-binding IgGs is also consistent with an extrafollicular response typical of innate B cells. These observations would help to improve our understanding of the immunological responses and B cell origin in HIT patients. Disclosures Padmanabhan: Retham Technologies: Current equity holder in private company; Veralox Therapeutics: Membership on an entity's Board of Directors or advisory committees; Versiti Blood Research Institute: Patents & Royalties.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261656
Author(s):  
Raphael A. Reyes ◽  
Kathleen Clarke ◽  
S. Jake Gonzales ◽  
Angelene M. Cantwell ◽  
Rolando Garza ◽  
...  

SARS-CoV-2 infection elicits a robust B cell response, resulting in the generation of long-lived plasma cells and memory B cells. Here, we aimed to determine the effect of COVID-19 severity on the memory B cell response and characterize changes in the memory B cell compartment between recovery and five months post-symptom onset. Using high-parameter spectral flow cytometry, we analyzed the phenotype of memory B cells with reactivity against the SARS-CoV-2 spike protein or the spike receptor binding domain (RBD) in recovered individuals who had been hospitalized with non-severe (n = 8) or severe (n = 5) COVID-19. One month after symptom onset, a substantial proportion of spike-specific IgG+ B cells showed an activated phenotype. In individuals who experienced non-severe disease, spike-specific IgG+ B cells showed increased expression of markers associated with durable B cell memory, including T-bet and FcRL5, as compared to individuals who experienced severe disease. While the frequency of T-bet+ spike-specific IgG+ B cells differed between the two groups, these cells predominantly showed an activated switched memory B cell phenotype in both groups. Five months post-symptom onset, the majority of spike-specific memory B cells had a resting phenotype and the percentage of spike-specific T-bet+ IgG+ memory B cells decreased to baseline levels. Collectively, our results highlight subtle differences in the B cells response after non-severe and severe COVID-19 and suggest that the memory B cell response elicited during non-severe COVID-19 may be of higher quality than the response after severe disease.


2020 ◽  
Author(s):  
Alberto Cagigi ◽  
Meng Yu ◽  
Sara Falck-Jones ◽  
Sindhu Vangeti ◽  
Björn Österberg ◽  
...  

AbstractUnderstanding immune responses following SARS-CoV-2 infection in relation to COVID-19 severity is critical for predicting the effects of long-term immunological memory on viral spread. Here we longitudinally assessed systemic and airway immune responses against SARS-CoV-2 in a well-characterized cohort of 147 infected individuals representing the full spectrum of COVID-19 severity; from asymptomatic infection to fatal disease. High systemic and airway antibody responses were elicited in patients with moderate to severe disease, and while systemic IgG levels were maintained after acute disease, airway IgG and IgA declined significantly. In contrast, individuals with mild symptoms showed significantly lower antibody responses but their levels of antigen-specific memory B cells were comparable with those observed in patients with moderate to severe disease. This suggests that antibodies in the airways may not be maintained at levels that prevent local virus entry upon re-exposure and therefore protection via activation of the memory B cell pool is critical.SummaryCOVID-19 severity determines the level of systemic and airway IgG and IgA but while IgG are maintained in plasma during convalescence, antibodies wane rapidly in the airways.However, comparable levels of antigen-specific memory B cells are generated across disease severity.


Blood ◽  
2007 ◽  
Vol 110 (12) ◽  
pp. 3978-3984 ◽  
Author(s):  
Silke F. Fischer ◽  
Philippe Bouillet ◽  
Kristy O'Donnell ◽  
Amanda Light ◽  
David M. Tarlinton ◽  
...  

Abstract T cell–dependent B-cell immune responses induce germinal centers that are sites for expansion, diversification, and selection of antigen-specific B cells. During the immune response, antigen-specific B cells are removed in a process that favors the retention of cells with improved affinity for antigen, a cell death process inhibited by excess Bcl-2. In this study, we examined the role of the BH3-only protein Bim, an initiator of apoptosis in the Bcl-2–regulated pathway, in the programmed cell death accompanying an immune response. After immunization, Bim-deficient mice showed persistence of both memory B cells lacking affinity-enhancing mutations in their immunoglobulin genes and antibody-forming cells secreting low-affinity antibodies. This was accompanied by enhanced survival of both cell types in culture. We have identified for the first time the physiologic mechanisms for killing low-affinity antibody-expressing B cells in an immune response and have shown this to be dependent on the BH3-only protein Bim.


2021 ◽  
Vol 12 ◽  
Author(s):  
Otto Castro Nogueira ◽  
Mariana Gandini ◽  
Natasha Cabral ◽  
Vilma de Figueiredo ◽  
Rodrigo Nunes Rodrigues-da-Silva ◽  
...  

Despite being treatable, leprosy still represents a major public health problem, and many mechanisms that drive leprosy immunopathogenesis still need to be elucidated. B cells play important roles in immune defense, being classified in different subgroups that present distinct roles in the immune response. Here, the profile of B cell subpopulations in peripheral blood of patients with paucibacillary (TT/BT), multibacillary (LL/BL) and erythema nodosum leprosum was analyzed. B cell subpopulations (memory, transition, plasmablasts, and mature B cells) and levels of IgG were analyzed by flow cytometry and ELISA, respectively. It was observed that Mycobacterium leprae infection can alter the proportions of B cell subpopulations (increase of mature and decrease of memory B cells) in patients affected by leprosy. This modulation is associated with an increase in total IgG and the patient’s clinical condition. Circulating B cells may be acting in the modulation of the immune response in patients with various forms of leprosy, which may reflect the patient’s ability to respond to M. leprae.


2021 ◽  
Author(s):  
Raphael Reyes ◽  
Kathleen Clarke ◽  
S. Jake Gonzales ◽  
Angelene M. Cantwell ◽  
Rolando Garza ◽  
...  

SARS-CoV-2 infection elicits a robust B cell response, resulting in the generation of long-lived plasma cells and memory B cells. Here, we aimed to determine the effect of COVID-19 severity on the memory B cell response and characterize changes in the memory B cell compartment between recovery and five months post-symptom onset. Using high-parameter spectral flow cytometry, we analyzed the phenotype of memory B cells with reactivity against the SARS-CoV-2 spike protein or the spike receptor binding domain (RBD) in recovered individuals who had been hospitalized with non-severe (n=8) or severe (n=5) COVID-19. One month after symptom onset, a substantial proportion of spike-specific IgG+ B cells showed an activated phenotype. In individuals who experienced non-severe disease, spike-specific IgG+ B cells showed increased expression of markers associated with durable B cell memory, including T-bet, FcRL5, and CD11c, which was not observed after severe disease. Five months post-symptom onset, the majority of spike-specific memory B cells had a resting phenotype and the percentage of spike-specific T-bet+ IgG+ memory B cells decreased to baseline levels. Collectively, our results suggest that the memory B cell response elicited during non-severe COVID-19 may be of higher quality than the response after severe disease.


mSphere ◽  
2018 ◽  
Vol 3 (4) ◽  
Author(s):  
Christopher D. Dupont ◽  
Ingrid L. Scully ◽  
Ross M. Zimnisky ◽  
Brinda Monian ◽  
Christina P. Rossitto ◽  
...  

ABSTRACTStaphylococcus aureuscauses severe disease in humans for which no licensed vaccine exists. A novelS. aureusvaccine (SA4Ag) is in development, targeting the capsular polysaccharides (CPs) and two virulence-associated surface proteins. Vaccine-elicited antibody responses to CPs are efficacious against serious infection by other encapsulated bacteria. Studies of naturalS. aureusinfection have also shown a role for TH17 and/or TH1 responses in protection. Single-antigen vaccines, including CPs, have not been effective againstS. aureus; a multiantigen vaccine approach is likely required. However, the impact of addition of protein antigens on the immune response to CPs has not been studied. Here, the immune response induced by a bivalent CP conjugate vaccine (to model the established mechanism of action of vaccine-induced protection against Gram-positive pathogens) was compared to the response induced by SA4Ag, which contains both CP conjugates and protein antigens, in cynomolgus macaques. Microengraving, flow cytometry, opsonophagocytic assays, and Luminex technology were used to analyze the B-cell, T-cell, functional antibody, and innate immune responses. Both the bivalent CP vaccine and SA4Ag induced cytokine production from naive cells and antigen-specific memory B-cell and functional antibody responses. Increases in levels of circulating, activated T cells were not apparent following vaccination, nor was a TH17 or TH1 response evident. However, our data are consistent with a vaccine-induced recruitment of T follicular helper (TFH) cells to lymph nodes. Collectively, these data suggest that the response to SA4Ag is primarily mediated by B cells and antibodies that abrogate importantS. aureusvirulence mechanisms.IMPORTANCEStaphylococcus aureuscauses severe disease in humans for which no licensed vaccine exists. A novel vaccine is in development that targets multiple elements of the bacteria since single-component vaccines have not shown efficacy to date. How these multiple components alter the immune response raised by the vaccine is not well studied. We found that the addition of two protein components did not alter substantially the antibody responses raised with respect to function or mobilization of B cells. There was also not a substantial change in the activity of T cells, another part of the adaptive response. This study showed that protection by this vaccine may be mediated primarily by antibody protection.


Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1457
Author(s):  
Dewald Schoeman ◽  
Burtram C. Fielding

Over the past 18 years, three highly pathogenic human (h) coronaviruses (CoVs) have caused severe outbreaks, the most recent causative agent, SARS-CoV-2, being the first to cause a pandemic. Although much progress has been made since the COVID-19 pandemic started, much about SARS-CoV-2 and its disease, COVID-19, is still poorly understood. The highly pathogenic hCoVs differ in some respects, but also share some similarities in clinical presentation, the risk factors associated with severe disease, and the characteristic immunopathology associated with the progression to severe disease. This review aims to highlight these overlapping aspects of the highly pathogenic hCoVs—SARS-CoV, MERS-CoV, and SARS-CoV-2—briefly discussing the importance of an appropriately regulated immune response; how the immune response to these highly pathogenic hCoVs might be dysregulated through interferon (IFN) inhibition, antibody-dependent enhancement (ADE), and long non-coding RNA (lncRNA); and how these could link to the ensuing cytokine storm. The treatment approaches to highly pathogenic hCoV infections are discussed and it is suggested that a greater focus be placed on T-cell vaccines that elicit a cell-mediated immune response, using rapamycin as a potential agent to improve vaccine responses in the elderly and obese, and the potential of stapled peptides as antiviral agents.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Maria Cristina de Vera Mudry ◽  
Franziska Regenass-Lechner ◽  
Laurence Ozmen ◽  
Bernd Altmann ◽  
Matthias Festag ◽  
...  

Theγ-secretase complex is a promising target in Alzheimer’s disease because of its role in the amyloidogenic processing ofβ-amyloid precursor protein. This enzyme also catalyzes the cleavage of Notch receptor, resulting in the nuclear translocation of intracellular Notch where it modulates gene transcription. Notch signaling is essential in cell fate decisions during embryogenesis, neuronal differentiation, hematopoiesis, and development of T and B cells, including splenic marginal zone (MZ) B cells. This B cell compartment participates in the early phases of the immune response to blood-borne bacteria and viruses. Chronic treatment with the oralγ-secretase inhibitor RO4929097 resulted in dose-dependent decreased cellularity (atrophy) of the MZ of rats and mice. Significant decreases in relative MZ B-cell numbers of RO4929097-treated animals were confirmed by flow cytometry. Numbers of MZ B cells reverted to normal after a sufficient RO4929097-free recovery period. Functional characterization of the immune response in relation to RO4929097-related MZ B cell decrease was assessed in mice vaccinated with inactivated vesicular stomatitis virus (VSV). Compared with the immunosuppressant cyclosporin A, RO4929097 caused only mild and reversible delayed early neutralizing IgM and IgG responses to VSV. Thus, the functional consequence of MZ B cell decrease on host defense is comparatively mild.


Sign in / Sign up

Export Citation Format

Share Document