Liar, a novel Lyn-binding nuclear/cytoplasmic shuttling protein that influences erythropoietin-induced differentiation

Blood ◽  
2009 ◽  
Vol 113 (16) ◽  
pp. 3845-3856 ◽  
Author(s):  
Amy L. Samuels ◽  
S. Peter Klinken ◽  
Evan Ingley

Abstract Erythropoiesis is primarily controlled by erythropoietin (Epo), which stimulates proliferation, differentiation, and survival of erythroid precursors. We have previously shown that the tyrosine kinase Lyn is critical for transducing differentiation signals emanating from the activated Epo receptor. A yeast 2-hybrid screen for downstream effectors of Lyn identified a novel protein, Liar (Lyn-interacting ankyrin repeat), which forms a multiprotein complex with Lyn and HS1 in erythroid cells. Interestingly, 3 of the ankyrin repeats of Liar define a novel SH3 binding region for Lyn and HS1. Liar also contains functional nuclear localization and nuclear export sequences and shuttles rapidly between the nucleus and cytoplasm. Ectopic expression of Liar inhibited the differentiation of normal erythroid progenitors, as well as immortalized erythroid cells. Significantly, Liar affected Epo-activated signaling molecules including Erk2, STAT5, Akt, and Lyn. These results show that Liar is a novel Lyn-interacting molecule that plays an important role in regulating intracellular signaling events associated with erythroid terminal differentiation.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2884-2884
Author(s):  
Amy L Samuels ◽  
Svend Peter Klinken ◽  
Evan Ingley

Abstract Erythropoiesis is primarily controlled by erythropoietin (Epo), which stimulates proliferation, differentiation and survival of erythroid precursors. We have previously shown that the tyrosine kinase Lyn is critical for transducing differentiation signals emanating from the activated Epo receptor. A yeast two-hybrid screen for downstream effectors of Lyn identified a novel protein, Liar (Lyn interacting ankyrin repeat), which forms a multi-protein complex with Lyn and HS1 in erythroid cells. Interestingly, the ankyrin repeats of Liar define a novel SH3 binding region for Lyn and HS1. Liar also contains functional nuclear localisation and nuclear export sequences, and shuttles rapidly between the nucleus and cytoplasm. Ectopic expression of Liar inhibited the differentiation of normal erythroid progenitors, as well as immortalised erythroid cells. Significantly, Liar affected Epo-activated signaling molecules including Erk2, STAT5 and Lyn. These results show that Liar is a novel Lyn-interacting molecule that plays an important role in regulating intracellular signaling events associated with erythroid terminal differentiation.


2019 ◽  
Vol 116 (36) ◽  
pp. 17841-17847 ◽  
Author(s):  
Michael A. Willcockson ◽  
Samuel J. Taylor ◽  
Srikanta Ghosh ◽  
Sean E. Healton ◽  
Justin C. Wheat ◽  
...  

Pu.1 is an ETS family transcription factor (TF) that plays critical roles in erythroid progenitors by promoting proliferation and blocking terminal differentiation. However, the mechanisms controlling expression and down-regulation of Pu.1 during early erythropoiesis have not been defined. In this study, we identify the actions of Runx1 and Pu.1 itself at the Pu.1 gene Upstream Regulatory Element (URE) as major regulators of Pu.1 expression in Burst-Forming Unit erythrocytes (BFUe). During early erythropoiesis, Runx1 and Pu.1 levels decline, and chromatin accessibility at the URE is lost. Ectopic expression of Runx1 or Pu.1, both of which bind the URE, prevents Pu.1 down-regulation and blocks terminal erythroid differentiation, resulting in extensive ex vivo proliferation and immortalization of erythroid progenitors. Ectopic expression of Runx1 in BFUe lacking a URE fails to block terminal erythroid differentiation. Thus, Runx1, acting at the URE, and Pu.1 itself directly regulate Pu.1 levels in erythroid cells, and loss of both factors is critical for Pu.1 down-regulation during terminal differentiation. The molecular mechanism of URE inactivation in erythroid cells through loss of TF binding represents a distinct pattern of Pu.1 regulation from those described in other hematopoietic cell types such as T cells which down-regulate Pu.1 through active repression. The importance of down-regulation of Runx1 and Pu.1 in erythropoiesis is further supported by genome-wide analyses showing that their DNA-binding motifs are highly overrepresented in regions that lose chromatin accessibility during early erythroid development.


Blood ◽  
2005 ◽  
Vol 105 (10) ◽  
pp. 4035-4042 ◽  
Author(s):  
Yann-Erick Claessens ◽  
Sophie Park ◽  
Anne Dubart-Kupperschmitt ◽  
Virginie Mariot ◽  
Carmen Garrido ◽  
...  

AbstractMyelodysplastic syndromes (MDSs) are characterized by peripheral blood cytopenia including anemia. We have investigated the implication of the extrinsic pathway of apoptosis in MDS-ineffective erythropoiesis by in vitro expansion of erythroid precursors from early stage (low and intermediate-1 International Prognosis Scoring System [IPSS]) MDS, advanced stage (intermediate-2 IPSS) MDS, and control bone marrow samples. We have previously shown that Fas and its ligand were overexpressed in early stage MDS erythroid cells. Here, we show that caspase-8 activity is significantly increased, whereas the expression of death receptors other than Fas, including the type 1 receptor for tumor necrosis factor α (TNF-α) and the receptors for the TNF-related apoptosis-inducing ligand (TRAIL), DR4 and DR5, was normal. We also observed that the adapter Fas-associated death domain (FADD) was overexpressed in early stage MDS erythroid cells. Transduction of early stage MDS-derived CD34+ progenitors with a FADD-encoding construct increased apoptosis of erythroid cells and dramatically reduced erythroid burst-forming unit (BFU-E) growth. Transduction of a dominant-negative (dn) mutant of FADD inhibited caspase-8 activity and cell death and rescued BFU-E growth without abrogating erythroid differentiation. These results extend the observation that Fas-dependent activation of caspase-8 accounts for apoptosis of early stage MDS erythroid cells and demonstrate for the first time that FADD is a valuable target to correct ineffective erythropoiesis in these syndromes.


Author(s):  
Shima Shahbaz ◽  
Lai Xu ◽  
Mohammad Osman ◽  
Wendy Sligl ◽  
Justin Shields ◽  
...  

AbstractSARS-CoV-2 infection is associated with lower blood oxygen levels even in patients without hypoxia requiring hospitalization. This discordance illustrates the need for a more unifying explanation as to whether SARS-CoV-2 directly or indirectly affects erythropoiesis. Here we show significantly enriched CD71+ erythroid precursors/progenitors in the blood circulation of COVID-19 patients that have distinctive immunosuppressive properties. A subpopulation of abundant erythroid cells, CD45+CD71+cells, co-express ACE2, TMPRSS2, CD147, CD26 and these can be infected with SARS-CoV-2. In turn, pre-treatment of erythroid cells with dexamethasone significantly diminished ACE2/TMPRSS2 expression and subsequently reduced their infectivity with SARS-CoV-2. Taken together, pathological abundance of erythroid cells might reflect stress erythropoiesis due to the invasion of erythroid progenitors by SARS-CoV-2. This may provide a novel insight into the impact of SARS-CoV-2 on erythropoiesis and hypoxia seen in COVID-19 patients.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3870-3870
Author(s):  
Sathish Kumar Mungamuri ◽  
Saghi Ghaffari

Abstract Erythropoietin (Epo) signaling is required for differentiation of erythroid progenitors to mature red blood cells. Binding of Epo to its receptor activates Jak2, which in turn activates many signaling proteins including AKT, MAPK proteins and STATs. We have shown previously that AKT is required for Epo regulation of erythroid cell maturation; activated AKT complements Epo receptor signaling in JAK2-deficient fetal liver cells and supports erythroid cell differentiation. AKT functions by phosphorylating several proteins including FoxO3 and mTOR. AKT phosphorylation of FoxO3 represses FoxO3’s activity, whereas AKT-dependant phosphorylation activates mTOR and its downstream target p70 S6 kinase (S6K). We have shown recently that FoxO3 is essential for the regulation of erythroid cell cycling, maturation, lifespan and anti-oxidant response (Marinkovic et al., JCI, 2007). Here we aimed at identifying other proteins in AKT signaling network that may regulate the maturation of erythroid progenitors. To address this, we inhibited several signaling pathways and analyzed their role in Epo-dependant maturation of freshly-isolated E14 fetal liver progenitors. As anticipated, blocking PI3-Kinase resulted in 60 % reduction of BFU-E- and CFU-E-derived colony formation and blocked the maturation of erythroid progenitors. Interestingly, blocking either p38 or ERK MAPK signaling showed 40% reduction in erythroid BFU-E- and CFU-E-derived colony formation. Surprisingly, blocking of mTOR signaling inhibited the formation of BFU-E- and CFU-E-derived colonies by 75 %. Further analysis by flow cytometry monitoring of cell surface markers CD71 and TER 119 showed that erythroid progenitor cell maturation could not proceed past early erythroblast stage when cells were cultured in the presence of rapamycin overnight. We confirmed that this block in differentiation was not due to apoptosis of erythroid cells. Since both FoxO3 and mTOR work downstream of AKT, we asked whether inhibition of mTOR has any impact on FoxO3 activity. Epo stimulation of freshly isolated bone marrow lineage-negative cells previously starved from cytokines showed a 2.3 fold increase in FoxO3 phosphorylation in the presence of rapamycin, suggesting cross talk between mTOR and FoxO3. Next, we investigated the effect of loss of FoxO3 on AKT/mTOR signaling in erythroid precursors. To address this, we prepared a population of bone marrow depleted from lineage-restricted cells and cultured under optimum erythroid conditions that generated 60% erythroblasts after 18 hours. Epo stimulation of FoxO3 null erythroid precursors led to hyperphosphorylation of Jak2, AKT, mTOR and S6K as compared to control cells. Since FoxO3 is critical for repression of reactive oxygen species (ROS), we evaluated the potential role of ROS in activating these proteins in FoxO3 mutant erythroid cells. In vitro treatment with ROS scavenger N-Acetyl-Cysteine (NAC) reduced significantly the hyper-phosphorylation of AKT, mTOR and S6K in FoxO3 null erythroid precursors in response to Epo. In addition, our results suggest that phosphorylation of JAK2 and its downstream signaling proteins AKT/mTOR/S6K in primary wild type erythroid precursor cells in response to Epo is mediated by ROS. Interestingly, ROS modulation of phosphorylation of mTOR/S6K was significantly stronger than that of AKT in response to Epo-stimulation of primary erythroid cells. Activation of AKT/mTOR/S6K is likely to mediate increased production of erythroid precursors observed in FoxO3 mutant mice (Marinkovic et al., JCI, 2007). Collectively these results indicate an important function for the AKT/mTOR/S6K signaling pathway in Epo-dependant erythropoiesis and suggest that cytokine-mediated production of ROS plays a critical role in the regulation of primary erythroid cell formation.


2005 ◽  
Vol 289 (3) ◽  
pp. E419-E428 ◽  
Author(s):  
Kumiko Saeki ◽  
Etsuko Yasugi ◽  
Emiko Okuma ◽  
Samuel N. Breit ◽  
Megumi Nakamura ◽  
...  

Insulin/IGF-I-dependent signals play important roles for the regulation of proliferation, differentiation, metabolism, and autophagy in various cells, including hematopoietic cells. Although the early protein kinase activation cascade has been intensively studied, the whole picture of intracellular signaling events has not yet been clarified. To identify novel downstream effectors of insulin-dependent signals in relatively early phases, we performed high-resolution two-dimensional electrophoresis (2-DE)-based proteomic analysis using human hematopoietic cells 1 h after insulin stimulation. We identified SRp20, a splicing factor, and CLIC1, an intracellular chloride ion channel, as novel downstream effectors besides previously reported effectors of Rho-guanine nucleotide dissociation inhibitor 2 and glutathione S-transferase-pi. Reduction in SRp20 was confirmed by one-dimensional Western blotting. Moreover, MG-132, a proteasome inhibitor, prevented this reduction. By contrast, upregulation of CLIC1 was not observed in one-dimensional Western blotting, unlike the 2-DE results. As hydrophilic proteins were predominantly recovered in 2-DE, the discrepancy between the 1-DE and 2-DE results may indicate a certain qualitative change of the protein. Indeed, the nuclear localization pattern of CLIC1 was remarkably changed by insulin stimulation. Thus insulin induces the proteasome-dependent degradation of SRp20 as well as the subnuclear relocalization of CLIC1.


2015 ◽  
Vol 213 (1) ◽  
pp. 123-138 ◽  
Author(s):  
Arata Takeuchi ◽  
Mohamed El Sherif Gadelhaq Badr ◽  
Kosuke Miyauchi ◽  
Chitose Ishihara ◽  
Reiko Onishi ◽  
...  

Naive T cells differentiate into various effector T cells, including CD4+ helper T cell subsets and CD8+ cytotoxic T cells (CTL). Although cytotoxic CD4+ T cells (CD4+CTL) also develop from naive T cells, the mechanism of development is elusive. We found that a small fraction of CD4+ T cells that express class I–restricted T cell–associated molecule (CRTAM) upon activation possesses the characteristics of both CD4+ and CD8+ T cells. CRTAM+ CD4+ T cells secrete IFN-γ, express CTL-related genes, such as eomesodermin (Eomes), Granzyme B, and perforin, after cultivation, and exhibit cytotoxic function, suggesting that CRTAM+ T cells are the precursor of CD4+CTL. Indeed, ectopic expression of CRTAM in T cells induced the production of IFN-γ, expression of CTL-related genes, and cytotoxic activity. The induction of CD4+CTL and IFN-γ production requires CRTAM-mediated intracellular signaling. CRTAM+ T cells traffic to mucosal tissues and inflammatory sites and developed into CD4+CTL, which are involved in mediating protection against infection as well as inducing inflammatory response, depending on the circumstances, through IFN-γ secretion and cytotoxic activity. These results reveal that CRTAM is critical to instruct the differentiation of CD4+CTL through the induction of Eomes and CTL-related gene.


Blood ◽  
2003 ◽  
Vol 101 (3) ◽  
pp. 1103-1110 ◽  
Author(s):  
Kelly M. McNagny ◽  
Thomas Graf

Abstract Acute chicken leukemia retroviruses, because of their capacity to readily transform hematopoietic cells in vitro, are ideal models to study the mechanisms governing the cell-type specificity of oncoproteins. Here we analyzed the transformation specificity of 2 acute chicken leukemia retroviruses, the Myb-Ets– encoding E26 virus and the ErbA/ErbB-encoding avian erythroblastosis virus (AEV). While cells transformed by E26 are multipotent (designated “MEP” cells), those transformed by AEV resemble erythroblasts. Using antibodies to separate subpopulations of precirculation yolk sac cells, both viruses were found to induce the proliferation of primitive erythroid progenitors within 2 days of infection. However, while AEV induced a block in differentiation of the cells, E26 induced a gradual shift in their phenotype and the acquisition of the potential for multilineage differentiation. These results suggest that the Myb-Ets oncoprotein of the E26 leukemia virus converts primitive erythroid cells into proliferating definitive-type multipotent hematopoietic progenitors.


2016 ◽  
Vol 113 (5) ◽  
pp. 1393-1398 ◽  
Author(s):  
Marie-Claude Sincennes ◽  
Magali Humbert ◽  
Benoît Grondin ◽  
Véronique Lisi ◽  
Diogo F. T. Veiga ◽  
...  

Oncogenic transcription factors are commonly activated in acute leukemias and subvert normal gene expression networks to reprogram hematopoietic progenitors into preleukemic stem cells, as exemplified by LIM-only 2 (LMO2) in T-cell acute lymphoblastic leukemia (T-ALL). Whether or not these oncoproteins interfere with other DNA-dependent processes is largely unexplored. Here, we show that LMO2 is recruited to DNA replication origins by interaction with three essential replication enzymes: DNA polymerase delta (POLD1), DNA primase (PRIM1), and minichromosome 6 (MCM6). Furthermore, tethering LMO2 to synthetic DNA sequences is sufficient to transform these sequences into origins of replication. We next addressed the importance of LMO2 in erythroid and thymocyte development, two lineages in which cell cycle and differentiation are tightly coordinated. Lowering LMO2 levels in erythroid progenitors delays G1-S progression and arrests erythropoietin-dependent cell growth while favoring terminal differentiation. Conversely, ectopic expression in thymocytes induces DNA replication and drives these cells into cell cycle, causing differentiation blockade. Our results define a novel role for LMO2 in directly promoting DNA synthesis and G1-S progression.


2020 ◽  
Author(s):  
Xuan Jiang ◽  
Amit Prabhakar ◽  
Stephanie M. Van der Voorn ◽  
Prajakta Ghatpande ◽  
Barbara Celona ◽  
...  

AbstractRibosome biogenesis in eukaryotes requires stoichiometric production and assembly of 80 ribosomal proteins (RPs) and 4 ribosomal RNAs, and its rate must be coordinated with cellular growth. The indispensable regulator of RP biosynthesis is the 5’-terminal oligopyrimidine (TOP) motif, spanning the transcription start site of all RP genes. Here we show that the Microprocessor complex, previously linked to the first step of processing microRNAs (miRNAs), coregulates RP expression by binding the TOP motif of nascent RP mRNAs and stimulating transcription elongation via resolution of DNA/RNA hybrids. Cell growth arrest triggers nuclear export and degradation of the Microprocessor protein Drosha by the E3 ubiquitin ligase Nedd4, accumulation of DNA/RNA hybrids at RP gene loci, decreased RP synthesis, and ribosome deficiency, hence synchronizing ribosome production with cell growth. Conditional deletion of Drosha in erythroid progenitors phenocopies human ribosomopathies, in which ribosomal insufficiency leads to anemia. Outlining a miRNA-independent role of the Microprocessor complex at the interphase between cell growth and ribosome biogenesis offers a new paradigm by which cells alter their protein biosynthetic capacity and cellular metabolism.


Sign in / Sign up

Export Citation Format

Share Document