scholarly journals Phosphorylation status of transcription factor C/EBPα determines cell-surface poly-LacNAc branching (I antigen) formation in erythropoiesis and granulopoiesis

Blood ◽  
2010 ◽  
Vol 115 (12) ◽  
pp. 2491-2499 ◽  
Author(s):  
Yuh-Ching Twu ◽  
Chuang-Yi Hsieh ◽  
Marie Lin ◽  
Cheng-Hwai Tzeng ◽  
Chien-Feng Sun ◽  
...  

The cell-surface straight and branched repeats of N-acetyllactosamine (LacNAc) units, called poly-LacNAc chains, characterize the histo-blood group i and I antigens, respectively. The transition of straight to branched poly-LacNAc chain (i to I) is determined by the I locus, which expresses 3 IGnT transcripts, IGnTA, IGnTB, and IGnTC. Our previous investigation demonstrated that the i-to-I transition in erythroid differentiation is regulated by the transcription factor CCAAT/enhancer binding protein α (C/EBPα). In the present investigation, the K-562 cell line was used as a model to show that the i-to-I transition is determined by the phosphorylation status of the C/EBPα Ser-21 residue, with dephosphorylated C/EBPα Ser-21 stimulating the transcription of the IGnTC gene, consequently resulting in I branching. Results from studies using adult erythropoietic and granulopoietic progenitor cells agreed with those derived using the K-562 cell model, with lentiviral expression of C/EBPα in CD34+ hematopoietic cells demonstrating that the dephosphorylated form of C/EBPα Ser-21 induced the expression of I antigen, granulocytic CD15, and also erythroid CD71 antigens. Taken together, these results demonstrate that the regulation of poly-LacNAc branching (I antigen) formation in erythropoiesis and granulopoiesis share a common mechanism, with dephosphorylation of the Ser-21 residue on C/EBPα playing the critical role.

Blood ◽  
2007 ◽  
Vol 110 (13) ◽  
pp. 4526-4534 ◽  
Author(s):  
Yuh-Ching Twu ◽  
Chie-Pein Chen ◽  
Chuang-Yi Hsieh ◽  
Cheng-Hwai Tzeng ◽  
Chien-Feng Sun ◽  
...  

The histo-blood group i and I antigens have been characterized as straight and branched repeats of N-acetyllactosamine, respectively, and the conversion of the straight-chain i to the branched-chain I structure on red cells is regulated to occur after birth. It has been demonstrated that the human I locus expresses 3 IGnT transcripts, IGnTA, IGnTB, and IGnTC, and that the last of these is responsible for the I branching formation on red cells. In the present investigation, the K-562 cell line was used as a model to show that the i-to-I transition in erythroid differentiation is determined by the transcription factor CCAAT/enhancer binding protein α (C/EBPα), which enhances transcription of the IGnTC gene, consequently leading to formation of the I antigen. Further investigation suggested that C/EBPα IGnTC-activation activity is modulated at a posttranslational level, and that the phosphorylation status of C/EBPα may have a crucial effect. Results from studies using adult and cord erythropoietic cells agreed with those derived using the K-562 cell model, with lentiviral expression of C/EBPα in CD34+ hemopoietic cells demonstrating the determining role of C/EBPα in the induction of the IGnTC gene as well as in I antigen expression.


Blood ◽  
2006 ◽  
Vol 107 (12) ◽  
pp. 4703-4710 ◽  
Author(s):  
Alexandros Vegiopoulos ◽  
Paloma García ◽  
Nikla Emambokus ◽  
Jon Frampton

Abstract The involvement of the transcription factor c-Myb in promoting the proliferation and inhibition of erythroid cell differentiation has been established in leukemia cell models. The anemia phenotype observed in c-myb knockout and knockdown mice highlights a critical role for c-Myb in erythropoiesis. However, determining the reason for the failure of erythropoiesis in these mice and the precise function of c-Myb in erythroid progenitors remains elusive. We examined erythroid development under conditions of reduced c-Myb protein levels and report an unexpected role for c-Myb in the promotion of commitment to the erythroid lineage and progression to erythroblast stages. c-myb knockdown erythroid colony-forming unit (CFU-E) stage progenitors displayed an immature phenotype and aberrant expression of several hematopoietic regulators. To extend our findings, we analyzed the response of normal enriched erythroid progenitors to inducible disruption of a floxed c-myb allele. In agreement with the c-myb knockdown phenotype, we show that c-Myb is strictly required for expression of the c-Kit receptor in erythroid cells.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 646-646
Author(s):  
Katharina Wagner ◽  
Pu Zhang ◽  
Frank Rosenbauer ◽  
Bettina Drescher ◽  
Susumu Kobayashi ◽  
...  

Abstract The lineage-determining transcription factor C/EBPα is required for myeloid differentiation. Decreased function or expression of C/EBPα is often found in human acute myeloid leukemia. However, the precise impact of C/EBPα deficiency on the maturation arrest in leukemogenesis is not well understood. To address this question, we used a murine transplantation model of a bcr/abl induced myeloproliferative disease. The expression of bcr/abl in C/EBPα+/+ and C/EBPα+/− fetal liver cells lead to a chronic myeloid leukemia-like disease. Surprisingly, bcr/abl expressing C/EBPα−/− fetal liver cells fail to induce a myeloid disease in transplanted mice, but instead cause a fatal, transplantable erythroleukemia. Accordingly, increased expression of SCL and GATA-1 in hematopoietic precursor cells of C/EBPα−/− fetal livers was found. The mechanism for the lineage shift from myeloid to erythroid leukemia was studied in a bcr/abl positive cell line. Consistent with findings of the transplant model, expression of C/EBPα and GATA-1 was inversely correlated. Id1, an inhibitor of erythroid differentiation, was upregulated upon C/EBPα expression. Chromatin immunoprecipitation was done and C/EBPα binding to a 3 prime enhancer of the Id1 gene was observed. Downregulation of Id1 by RNA interference impaired C/EBPα induced granulocytic differentiation. Thus, Id1 is a direct and critical target of C/EBPα. Taken together, our study provides the first evidence that myeloid lineage identity of malignant hematopoietic progenitor cells requires the residual expression of C/EBPα.


Blood ◽  
2008 ◽  
Vol 111 (12) ◽  
pp. 5727-5733 ◽  
Author(s):  
Jorge P. Pinto ◽  
Sara Ribeiro ◽  
Helena Pontes ◽  
Shifaan Thowfeequ ◽  
David Tosh ◽  
...  

Abstract Hepcidin is the principal iron regulatory hormone, controlling the systemic absorption and remobilization of iron from intracellular stores. Recent in vivo studies have shown that hepcidin is down-regulated by erythropoiesis, anemia, and hypoxia, which meets the need of iron input for erythrocyte production. Erythropoietin (EPO) is the primary signal that triggers erythropoiesis in anemic and hypoxic conditions. Therefore, a direct involvement of EPO in hepcidin regulation can be hypothesized. We report here the regulation of hepcidin expression by EPO, in a dose-dependent manner, in freshly isolated mouse hepatocytes and in the HepG2 human hepatocyte cell model. The effect is mediated through EPOR signaling, since hepcidin mRNA levels are restored by pretreatment with an EPOR-blocking antibody. The transcription factor C/EBPα showed a pattern of expression similar to hepcidin, at the mRNA and protein levels, following EPO and anti-EPOR treatments. Chromatin immunoprecipitation experiments showed a significant decrease of C/EBPα binding to the hepcidin promoter after EPO supplementation, suggesting the involvement of this transcription factor in the transcriptional response of hepcidin to EPO.


Blood ◽  
2006 ◽  
Vol 107 (5) ◽  
pp. 1857-1863 ◽  
Author(s):  
Kenji Kitajima ◽  
Makoto Tanaka ◽  
Jie Zheng ◽  
Hilo Yen ◽  
Ayuko Sato ◽  
...  

GATA-2 is a zinc finger transcription factor essential for differentiation of immature hematopoietic cells. We analyzed the function of GATA-2 by a combined method of tetracycline-dependent conditional gene expression and in vitro hematopoietic differentiation from mouse embryonic stem (ES) cells using OP9 stroma cells (OP9 system). In the presence of macrophage colony-stimulating factor (M-CSF), the OP9 system induced macrophage differentiation. GATA-2 expression in this system inhibited macrophage differentiation and redirected the fate of hematopoietic differentiation to other hematopoietic lineages. GATA-2 expression commencing at day 5 or day 6 induced megakaryocytic or erythroid differentiation, respectively. Expression levels of PU.1, a hematopoietic transcription factor that interferes with GATA-2, appeared to play a critical role in differentiation to megakaryocytic or erythroid lineages. Transcription of PU.1 was affected by histone acetylation induced by binding of GATA-2 to the PU.1 promoter region. This study demonstrates that the function of GATA-2 is modified in a context-dependent manner by expression of PU.1, which in turn is regulated by GATA-2.


2008 ◽  
Vol 28 (8) ◽  
pp. 2528-2548 ◽  
Author(s):  
Padmaja Gade ◽  
Sanjit K. Roy ◽  
Hui Li ◽  
Shreeram C. Nallar ◽  
Dhananjaya V. Kalvakolanu

ABSTRACT Transcription factor C/EBP-β regulates a number of physiological responses. During an investigation of the growth-suppressive effects of interferons (IFNs), we noticed that cebpb −/− cells fail to undergo apoptosis upon gamma IFN (IFN-γ) treatment, compared to wild-type controls. To examine the basis for this response, we have performed gene expression profiling of isogenic wild-type and cebpb −/− bone marrow macrophages and identified a number of IFN-γ-regulated genes that are dependent on C/EBP-β for their expression. These genes are distinct from those regulated by the JAK-STAT pathways. Genes identified in this screen appear to participate in various cellular pathways. Thus, we identify a new pathway through which the IFNs exert their effects on cellular genes through C/EBP-β. One of these genes is death-associated protein kinase 1 (dapk1). DAPK1 is critical for regulating the cell cycle, apoptosis, and metastasis. Using site-directed mutagenesis, RNA interference, and chromatin immunoprecipitation assays, we show that C/EBP-β binds to the promoter of dapk1 and is required for the regulation of dapk1. Both mouse dapk1 and human dapk1 exhibited similar dependences on C/EBP-β for their expression. The expression of the other members of the DAPK family occurred independently of C/EBP-β. Members of the C/EBP family of transcription factors other than C/EBP-β did not significantly affect dapk1 expression. We identified two elements in this promoter that respond to C/EBP-β. One of these is a consensus C/EBP-β-binding site that constitutively binds to C/EBP-β. The other element exhibits homology to the cyclic AMP response element/activating transcription factor binding sites. C/EBP-β binds to this site in an IFN-γ-dependent manner. Inhibition of ERK1/2 or mutation of an ERK1/2 site in the C/EBP-β protein suppressed the IFN-γ-induced response of this promoter. Together, our data show a critical role for C/EBP-β in a novel IFN-induced cell growth-suppressive pathway via DAPK1.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2700-2700
Author(s):  
Heather M. Rogers ◽  
Constance Tom Noguchi

Abstract An important treatment strategy for sickle cell anemia is increasing fetal hemoglobin (HbF) in circulating erythrocytes. OSI-2040 (Apicidin), a fungus-derived cyclic tetra-peptide, induces g-globin production in K562 cells. The effect of increasing doses of OSI-2040 (from 7.5 to 750 nM) was determined on cultures of primary human hematopoietic progenitor cells stimulated with erythropoietin (EPO). Cell proliferation and differentiation, globin production, and erythroid transcription factors expression were examined. At concentrations 7.5 nM - 75 nM there was minimal decrease in cell proliferation with little change in % benzidine positive cells after 12 days of culture with EPO. As OSI-2040 concentration increased above 75 nM, cell proliferation and % benzidine positive cells decreased, with concentrations of 300 and 750 nM being highly toxic, reducing cell number by 75% or more. Analysis of globin gene expression indicates that low to mid concentrations of OSI-2040 increase g-globin, with the peak increase occurring at 75 nM, while the highest concentrations (300 and 750 nM) suppress g-globin. OSI-2040 decreases b-globin expression with the highest concentrations resulting in the greatest decreases. The g/(g+b) ratio increases with increasing OSI-2040 concentration reaching a value of 4-fold and greater for concentrations of 75 nM or more, partially a consequence of the suppression of b-globin expression, particularly at higher concentrations. Although the g/(g+b) ratio is relatively high at the highest concentrations of OSI-2040 (300 and 750 nM), it is at a cost in overall globin production and cell toxicity. Hemoglobin expression is determined primarily at the transcription level. We found that OSI-2040 affects expression of select transcription factors, GATA-1, GATA-2, SCL/Tal-1 and EKLF, which are critical for erythroid differentiation. Peak EPO induction of GATA-1, a zinc-finger transcription factor essential for survival and differentiation of erythroid progenitor cells, is delayed with OSI-2040 treatment. OSI-2040 also delays expression of SCL/Tal-1, a basic-helix-loop-helix transcription factor that positively regulates erythroid differentiation and is required for the production of mature erythrocytes. In addition, there is a delay in the induction of EKLF, a zinc-finger transcription factor necessary for induction of b-globin in adult erythroid cells that acts by direct binding to the b-globin promoter. With increasing OSI-2040 concentrations, there is a dose-dependent decrease in overall levels of GATA-1, SCL/Tal-1 and EKLF. GATA-2, a member of the GATA-family that plays a critical role in the survival of early erythroid progenitor cells and is down-regulated with EPO stimulation, shows a slight delay in its reduction at 75 and 150 nM but overall is not greatly affected by OSI-2040. Thus, OSI-2040 concentration is crucial in optimizing the production of HbF. As we have also observed with hydroxyurea, the greatest increase in the g/g+b ratio is at high concentrations of OSI-2040 (300 and 750 nM), up to 25-fold, and is a consequence of reductions in both b- and g-globin. In contrast, a mid-level concentration (75 nM) yields a 2.5–4 fold increase in the g/(g+b) ratio with little or no cytotoxicity. These data suggest that like hydroxyurea, OSI-2040 may be effective in inducing HbF and may be a useful therapeutic alternative.


2015 ◽  
Vol 212 (7) ◽  
pp. 1001-1009 ◽  
Author(s):  
Kim L. Good-Jacobson ◽  
Kristy O’Donnell ◽  
Gabrielle T. Belz ◽  
Stephen L. Nutt ◽  
David M. Tarlinton

Plasma cell migration is crucial to immunity, but little is known about the molecular regulators of their migratory programs. Here, we detail the critical role of the transcription factor c-Myb in determining plasma cell location. In the absence of c-Myb, no IgG+ antigen-specific plasma cells were detected in the bone marrow after immunization or virus infection. This was correlated with a dramatic reduction of plasma cells in peripheral blood, mislocalization in spleen, and an inability of c-Myb–deficient plasma cells to migrate along a CXCL12 gradient. Therefore, c-Myb plays an essential, novel role in establishing the long-lived plasma cell population in the BM via responsiveness to chemokine migration cues.


Sign in / Sign up

Export Citation Format

Share Document