The antihelmintic flubendazole inhibits microtubule function through a mechanism distinct from Vinca alkaloids and displays preclinical activity in leukemia and myeloma

Blood ◽  
2010 ◽  
Vol 115 (23) ◽  
pp. 4824-4833 ◽  
Author(s):  
Paul A. Spagnuolo ◽  
Jiayi Hu ◽  
Rose Hurren ◽  
Xiaoming Wang ◽  
Marcela Gronda ◽  
...  

Abstract On-patent and off-patent drugs with previously unrecognized anticancer activity could be rapidly repurposed for this new indication given their prior toxicity testing. To identify such compounds, we conducted chemical screens and identified the antihelmintic flubendazole. Flubendazole induced cell death in leukemia and myeloma cell lines and primary patient samples at nanomolar concentrations. Moreover, it delayed tumor growth in leukemia and myeloma xenografts without evidence of toxicity. Mechanistically, flubendazole inhibited tubulin polymerization by binding tubulin at a site distinct from vinblastine. In addition, cells resistant to vinblastine because of overexpression of P-glycoprotein remained fully sensitive to flubendazole, indicating that flubendazole can overcome some forms of vinblastine resistance. Given the different mechanisms of action, we evaluated the combination of flubendazole and vinblastine in vitro and in vivo. Flubendazole synergized with vinblastine to reduce the viability of OCI-AML2 cells. In addition, combinations of flubendazole with vinblastine or vincristine in a leukemia xenograft model delayed tumor growth more than either drug alone. Therefore, flubendazole is a novel microtubule inhibitor that displays preclinical activity in leukemia and myeloma.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sofia M. Saraiva ◽  
Carlha Gutiérrez-Lovera ◽  
Jeannette Martínez-Val ◽  
Sainza Lores ◽  
Belén L. Bouzo ◽  
...  

AbstractTriple negative breast cancer (TNBC) is known for being very aggressive, heterogeneous and highly metastatic. The standard of care treatment is still chemotherapy, with adjacent toxicity and low efficacy, highlighting the need for alternative and more effective therapeutic strategies. Edelfosine, an alkyl-lysophospholipid, has proved to be a promising therapy for several cancer types, upon delivery in lipid nanoparticles. Therefore, the objective of this work was to explore the potential of edelfosine for the treatment of TNBC. Edelfosine nanoemulsions (ET-NEs) composed by edelfosine, Miglyol 812 and phosphatidylcholine as excipients, due to their good safety profile, presented an average size of about 120 nm and a neutral zeta potential, and were stable in biorelevant media. The ability of ET-NEs to interrupt tumor growth in TNBC was demonstrated both in vitro, using a highly aggressive and invasive TNBC cell line, and in vivo, using zebrafish embryos. Importantly, ET-NEs were able to penetrate through the skin barrier of MDA-MB 231 xenografted zebrafish embryos, into the yolk sac, leading to an effective decrease of highly aggressive and invasive tumoral cells’ proliferation. Altogether the results demonstrate the potential of ET-NEs for the development of new therapeutic approaches for TNBC.


BMC Cancer ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Chensheng Qiu ◽  
Weiliang Su ◽  
Nana Shen ◽  
Xiaoying Qi ◽  
Xiaolin Wu ◽  
...  

Abstract Background MNAT1 (menage a trois 1, MAT1), a cyclin-dependent kinase-activating kinase (CAK) complex, highly expressed in diverse cancers and was involved in cancer molecular pathogenesis. However, its deliverance profile and biological function in osteosarcoma (OS) remain unclear. Methods The expression of MNAT1 in OS was detected by western blot (WB) and immunohistochemistry (IHC). The potential relationship between MNAT1 molecular level expression and OS clinical expectations were analyzed according to tissues microarray (TMA). Proliferation potential of OS cells was evaluated in vitro based on CCK8 and OS cells colony formation assays, while OS cells transwell and in situ tissue source wound healing assays were employed to analyze the OS cells invasion and migration ability in vitro. A nude mouse xenograft model was used to detect tumor growth in vivo. In addition, ordinary bioinformatics analysis and experimental correlation verification were performed to investigate the underlying regulation mechanism of OS by MNAT1. Results In this research, we found and confirmed that MNAT1 was markedly over-expressed in OS tissue derived in situ, also, highly MNAT1 expression was closely associated with bad clinical expectations. Functional studies had shown that MNAT1 silencing could weaken the invasion, migration and proliferation of OS cells in vitro, and inhibit OS tumor growth in vivo. Mechanism study indicated that MNAT1 contributed to the progression of OS via the PI3K/Akt/mTOR pathway. We further verified that the MNAT1 was required in the regulation of OS chemo-sensitivity to cisplatin (DDP). Conclusions Taken together, the data of the present study demonstrate a novel molecular mechanism of MNAT1 involved in the formation of DDP resistance of OS cells.


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Yingkun Xu ◽  
Guangzhen Wu ◽  
Jiayao Zhang ◽  
Jianyi Li ◽  
Ningke Ruan ◽  
...  

Purpose. To evaluate the expression of tripartite motif-containing 33 (TRIM33) in ccRCC tissues and explore the biological effect of TRIM33 on the progress of ccRCC. Method. The Cancer Genome Atlas (TCGA) database was used to examine the mRNA expression levels of TRIM33 in ccRCC tissues and its clinical relevance. Immunohistochemistry (IHC) was performed to evaluate its expression in ccRCC tissues obtained from our hospital. The correlation between TRIM33 expression and clinicopathological features of the patients was also investigated. The effects of TRIM33 on the proliferation of ccRCC cells were examined using the CCK-8 and colony formation assays. The effects of TRIM33 on the migration and invasion of ccRCC cells were explored through wound healing and transwell assays, along with the use of Wnt signaling pathway agonists in rescue experiments. Western blotting was used to explore the potential mechanism of TRIM33 in renal cancer cells. A xenograft model was used to explore the effect of TRIM33 on tumor growth. Result. Bioinformatics analysis showed that TRIM33 mRNA expression in ccRCC tissues was downregulated, and low TRIM33 expression was related to poor prognosis in ccRCC patients. In agreement with this, low TRIM33 expression was detected in human ccRCC tissues. TRIM33 expression levels were correlated with clinical characteristics, including tumor size and Furman’s grade. Furthermore, TRIM33 overexpression inhibited proliferation, migration, and invasion of 786-O and ACHN cell lines. The rescue experiment showed that the originally inhibited migration and invasion capabilities were restored. TRIM33 overexpression reduced the expression levels of β-catenin, cyclin D1, and c-myc, and inhibited tumor growth in ccRCC cells in vivo. Conclusion. TRIM33 exhibits an abnormally low expression in human ccRCC tissues. TRIM33 may serve as a potential therapeutic target and prognostic marker for ccRCC.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2849-2849
Author(s):  
Nicolas Graf ◽  
Zhoulei Li ◽  
Ken Herrmann ◽  
Alexandra Junger ◽  
Daniel Weh ◽  
...  

Abstract Abstract 2849 Purpose: The thymidine analogue [18F]fluorothymidine (FLT) has been shown to reflect proliferation of high-grade lymphoma cells both in preclinical and clinical studies. In this preclinical in vitro and in vivo study we assessed early FLT-uptake as an adequate and robust surrogate marker for response to inhibitors of Nucleophosmin-anaplastic lymphoma kinase (NPM-ALK)-dependent pathways in an anaplastic large cell lymphoma (ALCL) xenotransplant model. Methods: In vitro investigations included viability assessment (MTT assay), cell cycle analysis using propidium iodide staining and western blotting to characterize response of the ALCL cell lines SUDHL-1 and Karpas299 to treatment with heat shock protein 90 (Hsp90) inhibitor NVP-AUY922, the Phosphoinositide 3-kinase (PI3K) inhibitor BGT226 or the mammalian target of rapamycin (mTOR) inhibitor RAD001. Thymidine metabolism in severe combined immunodeficient (SCID) mice bearing SUDHL-1 or Karpas 299 lymphoma xenotransplants was assessed non-invasively prior to and early in the course of therapy (48h to 7 days) by FLT and FDG positron emission tomography (FLT-PET and FDG-PET) using a dedicated small animal PET system. Tumor-to-background ratios (TBR) of FLT-PET were compared to that of PET using the standard radiotracer [18F]fluorodeoxyglucose (FDG). Reference for tumor response was local control of the tumor measured by shifting calliper and histopathological analysis of explanted lymphomas. Results: In vitro, SUDHL-1 cells were sensitive to all three inhibitors (IC50 AUY922= 50 nM; IC50 BGT266= 10 nM; IC50 RAD001= 1 nM). These cells showed a dose-dependent induction of cell-cycle arrest in G1-phase and reduction of S-Phase after 24 to 48 hours and - to a lesser extent - increase of apoptosis. Incubation of SUDHL-1 cells with NVP-AUY922 (50 nM) for 24 hours led to a 70% reduction of ALK level and a abrogation of Akt phosphorylation as determined by western blot analysis. Likewise, no phosphorylation of Akt was detectable after incubation with BGT266 (10 nM) already after 4 hours. RAD001 (0.1-1nM, 24h) completely inhibited phosphorylation of p70 S6K. In contrast, Karpas299 cells were only sensitive to RAD001-induced cell cycle arrest, but insensitive to NVP-AUY922 and BGT266. In vivo, we performed FLT- and FDG-PET scans to monitor inhibition of tumor growth in the course of therapy with NVP-AUY922. Tumor volume in treated animals bearing SUDHL-1 lymphomas showed modest increase within the first week (median increase= + 25%, range -30% to + 80%, n=8) as opposed to a 3.8-fold increase in untreated control animals. After 14 days a clear reduction of tumor mass could be observed (median= - 25%, range -40% to + 30%, n=4). Median TBR of FLT-PET decreased significantly to 40% compared to baseline as earlier as 5 days after initiation of therapy (range 32–67%, n=8, p=0,008). In contrast, the pattern of TBR in FDG-PET did not show any clear tendency (median TBR 79%, range 36%-161%, n=8, p=0,73). We then investigated the ability of FLT-PET to differentiate between sensitive and resistant lymphoma cells. Therefore, mice bearing Karpas299 lymphomas were treated with NVP-AUY922 (resistant in vitro) or RAD001 (sensitive in vitro). According to our in vitro results, no effect was seen during treatment with NVP-AUY299 as indicated by about 3-fold tumor growth on day 7 and increase of median TBR in FLT-PET to 162% (range 106–177%, p=0,008, n=8) on day 2. In contrast, mice receiving RAD001 showed a deceleration of tumor development with doubling of tumor volume within the first week (range -20% to + 320%, n=10) that remained fairly constant over the following weeks. FLT-PET imaging indicated a slight increase of TBR correctly reflecting tumor growth kinetics (median=126%, range 60–129%, no p-value). A larger cohort is currently investigated as well as histopathological analysis of explanted lymphomas. The updated data will be presented at the meeting. Conclusion: In contrast to FDG-PET, FLT-PET is able to predict response to specific inhibitors early in the course of the therapy using a anaplastic large cell lymphoma xenograft model and is able to distinguish between sensitive and resistant lymphoma cells. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 5722-5722
Author(s):  
Xun Ma ◽  
Ping Zhou ◽  
Monika Pilichowska ◽  
Chakra P Chaulagain ◽  
Sandy Wong ◽  
...  

Abstract Background Ig light chain (LC) diseases such as AL amyloidosis and monoclonal light-chain deposition disease are caused by pathologic free LC. Treatment is aimed at eliminating LC production but success is limited. RNA interference (RNAi) can stop LC production but the diversity of LC variable region sequences poses a challenge that targeting consensus sequences in the constant region (CR) of LC mRNA may overcome (Blood 2014;123:3440). We have developed siRNA pools designed to target the κ or λ LC CR mRNA in human plasma cells and impair LC production and secretion, and have shown that the pool targeting the λ LC CR can do so, and can also trigger a terminal unfolded protein response in clones producing intact Ig due to intracellular accumulation of unpaired heavy chains (ibid). Here we report the results of continued in vitro and in vivo testing of these pools in patient specimens and in a murine xenograft model. Methods Pools of siRNA for the κ or λ LC CR (si[IGLCκCR], si[IGLCλCR]) were custom produced with a non-target control (si[-]). They were introduced in vitro into human plasma cells by an optimized streptolysin O-based method (SLO) and in a NOD.SCID xenograft flank plasmacytoma model by in vivo electroporation as per Gene Therapy 2011;18:1150. In vitro we evaluated LC gene expression, production and secretion at 24 hours in human myeloma cell lines and CD138-selected specimens from patients with plasma cell neoplasms, using real-time PCR (qPCR) for LC mRNA, flow cytometry for intracellular LC mean fluorescence intensity (MFI) and ELISA (Bethyl Laboratories) for LC secretion in 24-hour suspension cultures (106 cells/ml). In vivo we inoculated each of the flanks of NOD.SCID mice with 107 human myeloma cells (ALMC-1 or ALMC-2). When plasmacytomas were 0.5cm3 we injected si[IGLCλCR] or si[-] one time to each flank plasmacytoma respectively, allowing each mouse to serve as its own control. Two days later, the mice were sacrificed and the plasmacytomas excised for qPCR for λ LC mRNA and serum was obtained to measure human λ LC levels by ELISA. Results We have previously described results with siRNA targeting the λ LC CR in human cell lines that make λ LC (ALMC-1, ALMC-2, EJM, OPM2, MM.1S, and MM.1R) and in 16 AL λ patient specimens. We demonstrated significant decreases in LC mRNA, intracellular LC MFI, and λ LC secretion by cell lines (Blood 2014;123:3220); moreover, transcriptional profiling indicated minimal off-target effects (ibid; Supplement). We now report that in vitro secretion of λ LC by CD138-selected plasma cells from AL patients (n=3, newly diagnosed λ) treated with si[IGLCλCR] was reduced by 65% from a mean of 3.1 to 1.0µg/ml and that the residual λ LC mRNA was 49% of control. Similarly we treated κ LC secreting human myeloma cell lines with si[IGLCκCR] and si[-] (IM9, H929, JJN-3, and ARH77). By qPCR the residual κ LC mRNA was 13%, by flow cytometry the MFI was reduced by a median of 67.3% (22.5-90.8), and by ELISA mean κ LC secretion was reduced from 3.7 to 0.8µg/ml (P = 0.055, paired t test). We treated CD138-selected κ patient samples (AL 3, LCDD 1, MM 6) in the same way. By qPCR the residual κ LC mRNA was 57% control, by flow cytometry the MFI was reduced by a median of 37.5% (14-69.8), and by ELISA secretion was reduced from 9.4 to 6.5µg/ml (P = 0.02, paired t test). In the murine dual-flank xenograft model employing λ secreting cells, by qPCR there was a reduction in λ LC mRNA with si[IGLCλCR] treatment in 13 of 16 mice (ALMC-1 11/114, ALMC-2 2/2). In these 14, the median λ LC expression was 66% of control (range, 17-97). In 6/13 the average reduction in λ LC expression was 59%. Of note, measurable levels of human λ LC were found in the blood of all mice at sacrifice. Conclusion With one pool of siRNA targeting the constant region of the κ or λ LC we can significantly reduce production and secretion of LC by clonal human plasma cells, including patient cells, and also reduce the expression of LC in xenograft plasmacytomas in vivo. Two methods of siRNA delivery have been employed in this work thus far, SLO and in vivo electroporation, neither of which require endosomal escape. The specificity of the siRNA pools for plasma cell LC genes and the possible receptivity of plasma cells to RNAi are important positive aspects of this work. Further pre-clinical development of Ig LC CR RNAi employing lipid-based nanoparticle platforms is warranted in order to optimize cell-specific delivery, delivery efficiency and siRNA targeting. Disclosures No relevant conflicts of interest to declare.


2008 ◽  
Vol 295 (6) ◽  
pp. G1150-G1158 ◽  
Author(s):  
Sharon DeMorrow ◽  
Heather Francis ◽  
Eugenio Gaudio ◽  
Julie Venter ◽  
Antonio Franchitto ◽  
...  

Cholangiocarcinomas are cancers that have poor prognosis and limited treatment options. The noncanonical Wnt pathway is mediated predominantly by Wnt 5a, which activates a Ca2+-dependent pathway involving protein kinase C, or a Ca2+-independent pathway involving the orphan receptor Ror2 and subsequent activation of Jun NH2-terminal kinase (JNK). This pathway is associated with growth-suppressing effects in numerous cell types. We have shown that anandamide decreases cholangiocarcinoma growth in vitro. Therefore, we determined the effects of anandamide on cholangiocarcinoma tumor growth in vivo using a xenograft model and evaluated the effects of anandamide on the noncanonical Wnt signaling pathways. Chronic administration of anandamide decreased tumor growth and was associated with increased Wnt 5a expression in vitro and in vivo. Treatment of cholangiocarcinoma cells with recombinant Wnt 5a decreased cell proliferation in vitro. Neither anandamide nor Wnt 5a affected intracellular calcium release, but both increased the JNK phosphorylation. Stable knockdown of Wnt 5a or Ror2 expression in cholangiocarcinoma cells abolished the effects of anandamide on cell proliferation and JNK activation. Modulation of the endocannabinoid system may be important in cholangiocarcinoma treatment. The antiproliferative actions of the noncanonical Wnt signaling pathway warrants further investigation to dissect the mechanism by which this may occur.


2013 ◽  
Vol 60 (1) ◽  
Author(s):  
Magdalena Wiktorska ◽  
Izabela Sacewicz-Hofman ◽  
Olga Stasikowska-Kanicka ◽  
Marian Danilewicz ◽  
Jolanta Niewiarowska

Receptors of the β1 integrin family are involved in many tumor-promoting activities. There are several approaches currently used to control integrin activity, and thus to potentially restrain tumor metastasis and angiogenesis. In this study, we compared inhibitory efficiencies of siRNA and DNAzymes against the β1 integrin subunit (DEβ1), in a mouse xenograft model. Both inhibitors were used under their most favorable conditions, in terms of concentrations, incubation time and lack of cytotoxic effects. Transfection of siRNAβ1 or DEβ1 remarkably inhibited the growth of both PC3 and HT29 colon cancer cells in vitro, and decreased their capability of initiating tumor formation in the mouse xenograft model. siRNAβ1 appeared to be slightly more efficient than DEβ1 when tested in vitro, however it was comparably less proficient in blocking the tumor growth in vivo. We conclude the DNAzyme, due to its greater resistance to degradation in extra- and intracellular compartments, to be a superior inhibitor of tumor growth in long lasting experiments in vivo when compared to siRNA, while the latter seems to be more efficient in blocking β1 expression during in vitro experiments using cell cultures.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3800-3800
Author(s):  
Alessandra Di Grande ◽  
Sofie Piers ◽  
Pieter Van Vlierberghe ◽  
Triona Ni Chonghaile

T-cell acute lymphoblastic leukaemia (T-ALL) is an aggressive hematologic malignancy arising from the transformation of immune T-cell lymphocytes. Early T-cell progenitor (ETP-ALL) is a subgroup particularly associated with a poor prognosis and a high risk for relapse. While the leukaemia initially develops in the thymus it spreads in the blood to the bone marrow, lymph nodes and often the spleen. Interestingly, splenomegaly was previously associated with a poor prognosis in leukemic patients. Recently, it was shown that ETP-ALL is dependent on the expression of the anti-apoptotic protein BCL-2, and is sensitive to inhibition with ABT-199, a BCL-2 specific BH3 mimetic. However, one issue with targeted agents, like ABT-199, is the development of resistance to treatment. Our aim was to determine potential in vivosites of resistance/relapse following ABT-199 treatment using a xenograft model of ETP-ALL. We confirmed that the ETP-ALL LOUCY cell line is BCL-2 dependent and then labelled it with luciferase to enable visualisation of the leukaemia in vivo. Following establishment of the leukaemia in NOD/SCID gamma mice, as assessed by hCD45+, the mice were randomised to receive vehicle control or 50 mg/kg ABT-199 by oral gavage daily for two weeks. While the mice were initially sensitive to ABT-199, the leukaemia started to progress while on treatment. Interestingly, there appeared to be a selective redistribution of the leukaemia to the spleen following ABT-199 treatment. Indeed, LOUCY cells isolated from the spleen of the mice had a reduced BCL-2 dependence, as assessed by BH3 profiling. The reduced BCL-2 dependence correlated with reduced BCL-2 expression at both the mRNA and protein level. Next, we confirmed that human splenic fibroblasts (HSF) co-cultured with the LOUCY cell line in vitro also altered BCL-2 dependence and expression using BH3 profiling and Western blotting. To identify potential splenic cytokines involved in the regulation of BCL-2 protein expression in ETP-ALL we performed a screening cytokine array. Upon co-culture of the LOUCY cells with HSF there was an increased expression of IL-6, this was confirmed using ELISA. Using an IL-6 receptor antibody we confirmed that blocking IL-6 receptor reversed the change in BCL-2 dependence in the presence of the splenic microenvironment. Lastly, we confirmed in a T-ALL patient-derived xenograft, that is BCL-2 dependent, that the splenic microenvironment alters the mitochondrial apoptotic threshold. Currently, there are reports in the literature of ETP-ALL patients being treated with ABT-199. While there have been numerous studies lately describing cell autonomous events leading to ABT-199 resistance, our novel finding that the splenic microenvironment is a site of relapse is potentially of great clinical importance for BCL-2 dependent leukemia's. Disclosures Ni Chonghaile: AbbVie: Research Funding.


2010 ◽  
Vol 299 (3) ◽  
pp. L393-L400 ◽  
Author(s):  
William Y. C. Chang ◽  
Debbie Clements ◽  
Simon R. Johnson

Matrix metalloproteinases (MMPs) have been implicated in lung cyst formation in lymphangioleiomyomatosis (LAM). As doxycycline inhibits MMP activity in vivo, some patients take doxycycline, as one report has suggested a possible benefit in LAM. However, there have been no randomized controlled clinical trials of doxycycline for LAM, and any mechanism of action is unclear. Here, we examine previously proposed mechanisms of actions. Cell proliferation and adhesion were examined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction and Cytomatrix cell adhesion kits. Apoptosis was examined by TdT-mediated dUTP nick end labeling (TUNEL) assay. MMP-2 expression was examined by quantitative real-time PCR and zymography in doxycycline-treated ELT3 cells and tumor growth using angiomyolipoma-derived tumor xenografts in nude mice. In ELT3 cells, ≥25 μg/ml doxycycline decreased proliferation, increased apoptosis, and caused a change in cell morphology associated with redistribution of actin stress filaments. Reduction in proliferation was also seen in human angiomyolipoma-derived cells. Cell adhesion to ECM proteins was decreased by doxycycline at 50 μg/ml and prevented detachment of already adherent cells. There was no effect of doxycycline on MMP-2 expression or activity in vitro. In the xenograft model, doxycycline (30 mg·kg−1·day−1) had no effect on tumor growth, final tumor weight, or tumor lysate MMP levels. Doxycycline at doses ≥ 25 μg/ml inhibited cell proliferation and adhesion, possibly by a toxic effect. Doxycycline had no effect on MMP-2 expression or activity or tumor growth in the xenograft model. Any possible in vivo effect is unlikely to be mediated by MMP-2 or reduced cell proliferation.


2021 ◽  
Author(s):  
Yu-Ling Lu ◽  
Yu-Tung Huang ◽  
Ming-Hsien Wu ◽  
Ting-Chao Chou ◽  
Richard J Wong ◽  
...  

Wee1 is a kinase that regulates the G2/M progression by inhibition of CDK1, which is critical for ensuring DNA damage repair before initiation of mitotic entry. Targeting Wee1 may be a potential strategy in the treatment of anaplastic thyroid cancer, a rare but lethal disease. The therapeutic effects of adavosertib, a Wee1 inhibitor for anaplastic thyroid cancer was evaluated in this study. Adavosertib inhibited cell growth in three anaplastic thyroid cancer cell lines in a dose-dependent manner. Cell cycle analysis revealed cells were accumulated in the G2/M phase. Adavosertib induced caspase-3 activity and led to apoptosis. Adavosertib monotherapy showed significant retardation of the growth of two anaplastic thyroid cancer tumor models. The combination of adavosertib with dabrafenib and trametinib revealed strong synergism in vitro and demonstrated robust suppression of tumor growth in vivo in anaplastic thyroid cancer xenograft models with BRAFV600E mutation. The combination of adavosertib with either sorafenib or lenvatinib also demonstrated synergism in vitro and had strong inhibition of tumor growth in vivo in an anaplastic thyroid cancer xenograft model. No appreciable toxicity appeared in mice treated with either single agent or combination treatment. Our findings suggest adavosertib holds the promise for the treatment of patients with anaplastic thyroid cancer.


Sign in / Sign up

Export Citation Format

Share Document