High-frequency type I/II mutational shifts between diagnosis and relapse are associated with outcome in pediatric AML: implications for personalized medicine

Blood ◽  
2010 ◽  
Vol 116 (15) ◽  
pp. 2752-2758 ◽  
Author(s):  
Costa Bachas ◽  
Gerrit Jan Schuurhuis ◽  
Iris H. I. M. Hollink ◽  
Zinia J. Kwidama ◽  
Bianca F. Goemans ◽  
...  

Abstract Although virtually all pediatric patients with acute myeloid leukemia (AML) achieve a complete remission after initial induction therapy, 30%-40% of patients will encounter a relapse and have a dismal prognosis. To prevent relapses, personalized treatment strategies are currently being developed, which target specific molecular aberrations. To determine relevance of established AML type I/II mutations that may serve as therapeutic targets, we assessed frequencies of these mutations and their persistence during disease progression in a large group (n = 69) of paired diagnosis and relapse pediatric AML specimens. In 26 of 42 patients (61%) harboring mutations at either stage of the disease, mutation status changed between diagnosis and relapse, particularly in FLT3, WT1, and RAS genes. Presence or gain of type I/II mutations at relapse was associated with a shorter time to relapse (TTR), whereas absence or loss correlated with longer TTR. Moreover, an adverse outcome was found for patients with activating mutations at relapse, which was statistically significant for FLT3/ITD and WT1 mutations. These findings suggest that mutational shifts affect disease progression. We hence propose that risk stratification, malignant cell detection, and selection of personalized treatment should be based on status of type I/II mutations both at initial diagnosis and during follow-up.

Cancers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2878
Author(s):  
Claudia Maria Hattinger ◽  
Maria Pia Patrizio ◽  
Leonardo Fantoni ◽  
Chiara Casotti ◽  
Chiara Riganti ◽  
...  

High-grade osteosarcoma (HGOS), the most common primary malignant tumor of bone, is a highly aggressive neoplasm with a cure rate of approximately 40–50% in unselected patient populations. The major clinical problems opposing the cure of HGOS are the presence of inherent or acquired drug resistance and the development of metastasis. Since the drugs used in first-line chemotherapy protocols for HGOS and clinical outcome have not significantly evolved in the past three decades, there is an urgent need for new therapeutic biomarkers and targeted treatment strategies, which may increase the currently available spectrum of cure modalities. Unresponsive or chemoresistant (refractory) HGOS patients usually encounter a dismal prognosis, mostly because therapeutic options and drugs effective for rescue treatments are scarce. Tailored treatments for different subgroups of HGOS patients stratified according to drug resistance-related biomarkers thus appear as an option that may improve this situation. This review explores drug resistance-related biomarkers, therapeutic targets and new candidate treatment strategies, which have emerged in HGOS. In addition to consolidated biomarkers, specific attention has been paid to the role of non-coding RNAs, tumor-derived extracellular vesicles, and cancer stem cells as contributors to drug resistance in HGOS, in order to highlight new candidate markers and therapeutic targets. The possible use of new non-conventional drugs to overcome the main mechanisms of drug resistance in HGOS are finally discussed.


2021 ◽  
Vol 14 (2) ◽  
pp. 80
Author(s):  
Mei Elsayed ◽  
Petros Christopoulos

Anaplastic lymphoma kinase-rearranged non-small-cell lung cancer (ALK+ NSCLC) is a model disease for the use of targeted pharmaceuticals in thoracic oncology. Due to higher systemic and intracranial efficacy, the second-generation ALK tyrosine kinase inhibitors (TKI) alectinib and brigatinib have irrevocably displaced crizotinib as standard first-line treatment, based on the results of the ALEX and ALTA-1L trials. Besides, lorlatinib and brigatinib are the preferred second-line therapies for progression under second-generation TKI and crizotinib, respectively, based on the results of several phase II studies. Tissue or liquid rebiopsies at the time of disease progression, even though not mandated by the approval status of any ALK inhibitor, are gaining importance for individualization and optimization of patient management. Of particular interest are cases with off-target resistance, for example MET, HER2 or KRAS alterations, which require special therapeutic maneuvers, e.g., inclusion in early clinical trials or off-label administration of respectively targeted drugs. On the other hand, up to approximately half of the patients failing TKI, develop anatomically restricted progression, which can be initially tackled with local ablative measures without switch of systemic therapy. Among the overall biologically favorable ALK+ tumors, with a mean tumor mutational burden uniquely below 3 mutations per Mb and the longest survival among NSCLC currently, presence of the EML4-ALK fusion variant 3 and/or TP53 mutations identify high-risk cases with earlier treatment failure and a need for more aggressive surveillance and treatment strategies. The potential clinical utility of longitudinal ctDNA assays for earlier detection of disease progression and improved guidance of therapy in these patients is a currently a matter of intense investigation. Major pharmaceutical challenges for the field are the development of more potent, fourth-generation TKI and effective immuno-oncological interventions, especially ALK-directed cell therapies, which will be essential for further improving survival and achieving cure of ALK+ tumors.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
H. Jessen ◽  
N. Hoyer ◽  
T. S. Prior ◽  
P. Frederiksen ◽  
M. A. Karsdal ◽  
...  

Abstract Background Idiopathic pulmonary fibrosis (IPF) is characterized by the accumulation of fibrillar collagens in the alveolar space resulting in reduced pulmonary function and a high mortality rate. Biomarkers measuring the turnover of type I and III collagen could provide valuable information for prognosis and treatment decisions in IPF. Methods Serological biomarkers reflecting the formation of type III collagen (PRO-C3) and degradation of type I (C1M) and III collagen (C3M) were evaluated in a real-world cohort of 178 newly diagnosed IPF patients. Blood samples and clinical data were collected at baseline, six, and 12 months. Baseline and longitudinal biomarker levels were related to disease progression of IPF (defined as ≥ 5% decline in forced vital capacity (FVC) and/or ≥ 10% decline in diffusing capacity for carbon monoxide (DLco) and/or all-cause mortality at 12 months). Furthermore, we analysed differences in percentage change of biomarker levels from baseline between patients receiving antifibrotic treatment or not. Results Increased baseline levels of type I and III collagen turnover biomarkers were associated with a greater risk of disease progression within 12 months compared to patients with a low baseline type I and III collagen turnover. Patients with progressive disease had higher serum levels of C1M (P = 0.038) and PRO-C3 (P = 0.0022) compared to those with stable disease over one year. There were no differences in biomarker levels between patients receiving pirfenidone, nintedanib, or no antifibrotics. Conclusion Baseline levels of type I and III collagen turnover were associated with disease progression within 12 months in a real-world cohort of IPF patients. Longitudinal biomarker levels of type I and III collagen turnover were related to progressive disease. Moreover, antifibrotic therapy did not affect type I and III collagen turnover biomarkers in these patients. PRO-C3 and C1M may be potential biomarkers for a progressive disease behavior in IPF.


2017 ◽  
Vol 115 (3) ◽  
pp. E363-E371 ◽  
Author(s):  
Ana M. Porras ◽  
Jennifer A. Westlund ◽  
Austin D. Evans ◽  
Kristyn S. Masters

An insufficient understanding of calcific aortic valve disease (CAVD) pathogenesis remains a major obstacle in developing treatment strategies for this disease. The aim of the present study was to create engineered environments that mimic the earliest known features of CAVD and apply this in vitro platform to decipher relationships relevant to early valve lesion pathobiology. Glycosaminoglycan (GAG) enrichment is a dominant hallmark of early CAVD, but culture of valvular interstitial cells (VICs) in biomaterial environments containing pathological amounts of hyaluronic acid (HA) or chondroitin sulfate (CS) did not directly increase indicators of disease progression such as VIC activation or inflammatory cytokine production. However, HA-enriched matrices increased production of vascular endothelial growth factor (VEGF), while matrices displaying pathological levels of CS were effective at retaining lipoproteins, whose deposition is also found in early CAVD. Retained oxidized low-density lipoprotein (oxLDL), in turn, stimulated myofibroblastic VIC differentiation and secretion of numerous inflammatory cytokines. OxLDL also increased VIC deposition of GAGs, thereby creating a positive feedback loop to further enrich GAG content and promote disease progression. Using this disease-inspired in vitro platform, we were able to model a complex, multistep pathological sequence, with our findings suggesting distinct roles for individual GAGs in outcomes related to valve lesion progression, as well as key differences in cell–lipoprotein interactions compared with atherosclerosis. We propose a pathogenesis cascade that may be relevant to understanding early CAVD and envision the extension of such models to investigate other tissue pathologies or test pharmacological treatments.


2015 ◽  
Vol 112 (49) ◽  
pp. E6744-E6751 ◽  
Author(s):  
Malori A. Lankenau ◽  
Ravi Patel ◽  
Sandya Liyanarachchi ◽  
Sophia E. Maharry ◽  
Kevin W. Hoag ◽  
...  

The B-Raf proto-oncogene serine/threonine kinase (BRAF) gene is the most frequently mutated gene in malignant melanoma (MM) and papillary thyroid cancer (PTC) and is causally involved in malignant cell transformation. Mutated BRAF is associated with an aggressive disease phenotype, thus making it a top candidate for targeted treatment strategies in MM and PTC. We show that BRAF mutations in both MM and PTC drive increased expression of oncomiR-3151, which is coactivated by the SP1/NF-κB complex. Knockdown of microRNA-3151 (miR-3151) with short hairpin RNAs reduces cell proliferation and increases apoptosis of MM and PTC cells. Using a targeted RNA sequencing approach, we mechanistically determined that miR-3151 directly targets TP53 and other members of the TP53 pathway. Reducing miR-3151’s abundance increases TP53’s mRNA and protein expression and favors its nuclear localization. Consequently, knockdown of miR-3151 also leads to caspase-3–dependent apoptosis. Simultaneous inhibition of aberrantly activated BRAF and knockdown of miR-3151 potentiates the effects of sole BRAF inhibition with the BRAF inhibitor vemurafenib and may provide a novel targeted therapeutic approach in BRAF-mutated MM and PTC patients. In conclusion, we identify miR-3151 as a previously unidentified player in MM and PTC pathogenesis, which is driven by BRAF-dependent and BRAF-independent mechanisms. Characterization of TP53 as a downstream effector of miR-3151 provides evidence for a causal link between BRAF mutations and TP53 inactivation.


2018 ◽  
Vol 17 (4) ◽  
pp. 29-33
Author(s):  
F. I. Inoyatova ◽  
G Z. Inogamova

The structure of liver cirrhosis (LC) in children of Uzbekistan was studied. 135 children with viral etiology of liver cirrhosis at the age of 7—15 years of life were examined. It was established that in the structure of viral liver cirrhosis in children, mixed etiology prevails (77.1%) with a predominance of HDV infection (B + C + D — 35.6% and B + D — 23.7%). Mixed infection is considered as a predictor of disease progression, especially in cases of overlap of HDV infection, which was also expressed by the frequent identification of the decompensated stage of the liver cirrhosis C-class of Child-Pugh and complications. Levels of N-terminal propeptides and C-terminal telopeptides of type I collagen in children with liver cirrhosis can serve as markers of compensation and progression of the disease.


Stats ◽  
2021 ◽  
Vol 4 (4) ◽  
pp. 776-792
Author(s):  
Yingchao Zhong ◽  
Chang Wang ◽  
Lu Wang

In this paper, we consider personalized treatment decision strategies in the management of chronic diseases, such as chronic kidney disease, which typically consists of sequential and adaptive treatment decision making. We investigate a two-stage treatment setting with a survival outcome that could be right censored. This can be formulated through a dynamic treatment regime (DTR) framework, where the goal is to tailor treatment to each individual based on their own medical history in order to maximize a desirable health outcome. We develop a new method, Survival Augmented Patient Preference incorporated reinforcement Q-Learning (SAPP-Q-Learning) to decide between quality of life and survival restricted at maximal follow-up. Our method incorporates the latent patient preference into a weighted utility function that balances between quality of life and survival time, in a Q-learning model framework. We further propose a corresponding m-out-of-n Bootstrap procedure to accurately make statistical inferences and construct confidence intervals on the effects of tailoring variables, whose values can guide personalized treatment strategies.


Blood ◽  
2021 ◽  
Author(s):  
Guang Yang ◽  
Jinhua Wang ◽  
Li Tan ◽  
Manit Munshi ◽  
Xia Liu ◽  
...  

Activating mutations in MYD88 promote malignant cell growth and survival through HCK mediated BTK activation. Ibrutinib binds to BTKCys481 and is active in B-cell malignancies driven by mutated MYD88. Mutations in BTKCys481 particularly BTKCys481Ser are common in patients with acquired ibrutinib resistance. We therefore performed an extensive medicinal chemistry campaign and identified KIN-8194 as a novel dual inhibitor of HCK and BTK. KIN-8194 showed potent and selective in vitro killing of MYD88 mutated lymphoma cells, including ibrutinib resistant BTKCys481Ser expressing cells. KIN-8194 demonstrated excellent bioavailability and pharmacokinetic parameters, with good tolerance in rodent models at pharmacologically achievable and active doses. Pharmacodynamic studies showed sustained HCK and BTK inhibition for 24 hours following single oral administration of KIN-8194 in MYD88 mutated TMD-8 ABC DLBCL xenografted mice with either wild-type BTK (BTKWT) or BTKCys481Ser expressing tumors. KIN-8194 showed superior survival benefit over ibrutinib in both BTKWT and BTKCys481Ser expressing TMD-8 DLBCL xenografted mice, including sustained complete responses >12 weeks off treatment in mice with BTKWT expressing TMD-8 tumors. The Bcl-2 inhibitor venetoclax enhanced the anti-tumor activity of KIN-8194 in BTKWT and BTKCys481Ser expressing MYD88 mutated lymphoma cells, and markedly reduced tumor growth and prolonged survival in mice with BTKCys481Ser expressing TMD-8 tumors treated with both drugs. The findings highlight the feasibility of targeting HCK, a key driver of mutated MYD88 pro-survival signaling, and provide a framework for the advancement of KIN-8194 for human studies in B-cell malignancies driven by HCK and BTK.


Sign in / Sign up

Export Citation Format

Share Document