scholarly journals Hypoxia modulates the gene expression profile of immunoregulatory receptors in human mature dendritic cells: identification of TREM-1 as a novel hypoxic marker in vitro and in vivo

Blood ◽  
2011 ◽  
Vol 117 (9) ◽  
pp. 2625-2639 ◽  
Author(s):  
Maria Carla Bosco ◽  
Daniele Pierobon ◽  
Fabiola Blengio ◽  
Federica Raggi ◽  
Cristina Vanni ◽  
...  

Abstract Dendritic cells (DCs) are a heterogeneous group of professional antigen-presenting cells functioning as sentinels of the immune system and playing a key role in the initiation and amplification of innate and adaptive immune responses. DC development and functions are acquired during a complex differentiation and maturation process influenced by several factors present in the local milieu. A common feature at pathologic sites is represented by hypoxia, a condition of low pO2, which creates a unique microenvironment affecting cell phenotype and behavior. Little is known about the impact of hypoxia on the generation of mature DCs (mDCs). In this study, we identified by gene expression profiling a significant cluster of genes coding for immune-related cell surface receptors strongly up-regulated by hypoxia in monocyte-derived mDCs and characterized one of such receptors, TREM-1, as a new hypoxia-inducible gene in mDCs. TREM-1 associated with DAP12 in hypoxic mDCs, and its engagement elicited DAP12-linked signaling, resulting in ERK-1, Akt, and IκBα phosphorylation and proinflammatory cytokine and chemokine secretion. Finally, we provided the first evidence that TREM-1 is expressed on mDCs infiltrating the inflamed hypoxic joints of children affected by juvenile idiopathic arthritis, representing a new in vivo marker of hypoxic mDCs endowed with proinflammatory properties.

2021 ◽  
Vol 12 ◽  
Author(s):  
David Hongo ◽  
Pingping Zheng ◽  
Suparna Dutt ◽  
Rahul Pawar ◽  
Everett Meyer ◽  
...  

Classical dendritic cells (cDCs) in mice have been divided into 2 major subsets based on the expression of nuclear transcription factors: a CD8+Irf8+Batf3 dependent (DC1) subset, and a CD8-Irf4+ (DC2) subset. We found that the CD8+DC1 subset can be further divided into CD8+DC1a and CD8+DC1b subsets by differences in surface receptors, gene expression, and function. Whereas all 3 DC subsets can act alone to induce potent Th1 cytokine responses to class I and II MHC restricted peptides derived from ovalbumin (OVA) by OT-I and OT-II transgenic T cells, only the DC1b subset could effectively present glycolipid antigens to natural killer T (NKT) cells. Vaccination with OVA protein pulsed DC1b and DC2 cells were more effective in reducing the growth of the B16-OVA melanoma as compared to pulsed DC1a cells in wild type mice. In conclusion, the Batf3-/- dependent DC1 cells can be further divided into two subsets with different immune functional profiles in vitro and in vivo.


2021 ◽  
Vol 22 (3) ◽  
pp. 1222
Author(s):  
Cristina Cuello ◽  
Cristina A. Martinez ◽  
Josep M. Cambra ◽  
Inmaculada Parrilla ◽  
Heriberto Rodriguez-Martinez ◽  
...  

This study was designed to investigate the impact of vitrification on the transcriptome profile of blastocysts using a porcine (Sus scrofa) model and a microarray approach. Blastocysts were collected from weaned sows (n = 13). A total of 60 blastocysts were vitrified (treatment group). After warming, vitrified embryos were cultured in vitro for 24 h. Non-vitrified blastocysts (n = 40) were used as controls. After the in vitro culture period, the embryo viability was morphologically assessed. A total of 30 viable embryos per group (three pools of 10 from 4 different donors each) were subjected to gene expression analysis. A fold change cut-off of ±1.5 and a restrictive threshold at p-value < 0.05 were used to distinguish differentially expressed genes (DEGs). The survival rates of vitrified/warmed blastocysts were similar to those of the control (nearly 100%, n.s.). A total of 205 (112 upregulated and 93 downregulated) were identified in the vitrified blastocysts compared to the control group. The vitrification/warming impact was moderate, and it was mainly related to the pathways of cell cycle, cellular senescence, gap junction, and signaling for TFGβ, p53, Fox, and MAPK. In conclusion, vitrification modified the transcriptome of in vivo-derived porcine blastocysts, resulting in minor gene expression changes.


Author(s):  
Mandy Rauschner ◽  
Luisa Lange ◽  
Thea Hüsing ◽  
Sarah Reime ◽  
Alexander Nolze ◽  
...  

Abstract Background The low extracellular pH (pHe) of tumors resulting from glycolytic metabolism is a stress factor for the cells independent from concomitant hypoxia. The aim of the study was to analyze the impact of acidic pHe on gene expression on mRNA and protein level in two experimental tumor lines in vitro and in vivo and were compared to hypoxic conditions as well as combined acidosis+hypoxia. Methods Gene expression was analyzed in AT1 prostate and Walker-256 mammary carcinoma of the rat by Next Generation Sequencing (NGS), qPCR and Western blot. In addition, the impact of acidosis on tumor cell migration, adhesion, proliferation, cell death and mitochondrial activity was analyzed. Results NGS analyses revealed that 147 genes were uniformly regulated in both cell lines (in vitro) and 79 genes in both experimental tumors after 24 h at low pH. A subset of 25 genes was re-evaluated by qPCR and Western blot. Low pH consistently upregulated Aox1, Gls2, Gstp1, Ikbke, Per3, Pink1, Tlr5, Txnip, Ypel3 or downregulated Acat2, Brip1, Clspn, Dnajc25, Ercc6l, Mmd, Rif1, Zmpste24 whereas hypoxia alone led to a downregulation of most of the genes. Direct incubation at low pH reduced tumor cell adhesion whereas acidic pre-incubation increased the adhesive potential. In both tumor lines acidosis induced a G1-arrest (in vivo) of the cell cycle and a strong increase in necrotic cell death (but not in apoptosis). The mitochondrial O2 consumption increased gradually with decreasing pH. Conclusions These data show that acidic pHe in tumors plays an important role for gene expression independently from hypoxia. In parallel, acidosis modulates functional properties of tumors relevant for their malignant potential and which might be the result of pH-dependent gene expression.


2020 ◽  
Vol 2020 ◽  
pp. 1-14 ◽  
Author(s):  
Kirsi Tamminen ◽  
Suvi Heinimäki ◽  
Timo Vesikari ◽  
Vesna Blazevic

We have previously shown that rotavirus (RV) inner capsid protein VP6 has an adjuvant effect on norovirus (NoV) virus-like particle- (VLP-) induced immune responses and studied the adjuvant mechanism in immortalized cell lines used as antigen-presenting cells (APCs). Here, we investigated the uptake and presentation of RV VP6 and NoV GII.4 VLPs by primary bone marrow-derived dendritic cells (BMDCs). The adjuvant effect of VP6 on GII.4 VLP presentation and NoV-specific immune response induction by BMDC in vivo was also studied. Intracellular staining demonstrated that BMDCs internalized both antigens, but VP6 more efficiently than NoV VLPs. Both antigens were processed and presented to antigen-primed T cells, which responded by robust interferon γ secretion. When GII.4 VLPs and VP6 were mixed in the same pulsing reaction, a subpopulation of the cells had uptaken both antigens. Furthermore, VP6 copulsing increased GII.4 VLP uptake by 37% and activated BMDCs to secrete 2-5-fold increased levels of interleukin 6 and tumor necrosis factor α compared to VLP pulsing alone. When in vitro-pulsed BMDCs were transferred to syngeneic BALB/c mice, VP6 improved NoV-specific antibody responses. The results of this study support the earlier findings of VP6 adjuvant effect in vitro and in vivo.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 1208 ◽  
Author(s):  
Michael J. Garabedian ◽  
Charles A. Harris ◽  
Freddy Jeanneteau

Glucocorticoids via the glucocorticoid receptor (GR) have effects on a variety of cell types, eliciting important physiological responses via changes in gene expression and signaling. Although decades of research have illuminated the mechanism of how this important steroid receptor controls gene expression using in vitro and cell culture–based approaches, how GR responds to changes in external signals in vivo under normal and pathological conditions remains elusive. The goal of this review is to highlight recent work on GR action in fat cells and liver to affect metabolism in vivo and the role GR ligands and receptor phosphorylation play in calibrating signaling outputs by GR in the brain in health and disease. We also suggest that both the brain and fat tissue communicate to affect physiology and behavior and that understanding this “brain-fat axis” will enable a more complete understanding of metabolic diseases and inform new ways to target them.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3808-3808
Author(s):  
Zhen Cai ◽  
Wenye Huang ◽  
Wenji Sun

Abstract Mycophenolate mofetil (MMF) is a newly developed immunosuppressor, currently widely used in allogeneic bone marrow transplantation. Its active metabolite, mycophenolic acid (MPA) is a noncompetitive, reversible inhibitor of the enzyme inosine 59-monophosphate dehydrogenase, which plays a major role in the de novo synthesis of guanosine nucleotides. Unlike other cells that also use the salvage pathway for purine biosynthesis, proliferating B and T cells are dependent on the de novo pathway generate guanosine. Thus, MMF exerts its immunosuppressive effects of lymphocyte proliferation. Recently, some studies found that MPA could inhibit the immun immune function of antigen presenting cells. Dendritic cells (DCs), the most potent antigen presenting cells with the unique ability to prime naive T cells, play a central role in antigen processing and presentation to induce T cell response in vitro and in vivo. This study is to evaluate the effects of MPA, the in vivo active metabolite of MMF, on the maturation and immune function of murine bone marrow-derived dendritic cells, and to explore the underlying mechanisms of MMF in graft versus host disease. Bone marrow-derived dendritic cells (DC) were cultured with GM-CSF and IL-4 in the presence of MPA at doses of 0.01 and 0.1μmol/L. The ability of the allostimulatory activities of the DCs on allogeneic T cells was assessed by MLR. IL-12 production in culture supernatant and the Th1/Th2 cytokines such as IL-2, IFN-g, IL-4 and IL-10 levels in mixed lymphocyte reaction (MLR) supernatant were examined by ELISA assays. The activity of NF-κB in DCs was measured with Western blot assays. Our results showed that DCs cultured in the presence of MPA expressed lower levels of CD40, CD80 and CD86, exhibited weaker activity of stimulating the allogeneic T cell proliferation and weaker in antigen presenting function with a concurrent reduction of IL-12 production. MPA-treated DCs stimulated allogeneic T cells to secrete higher levels of Th2 cytokines IL-4 and IL-10 but lower levels of Th1 cytokines IL-2 and IFN-g than did DCs not treated with MPA. The activity of NF-κB was decreased in DCs treated with MPA in a dose-dependent manner. We conclude that MPA, and hence MMF, exerts a negative effect on the maturation and immune function of in vitro cultured DCs, and drives a shift of Th1 cytokines to Th2 cytokines in MLR. This negative effect is associated with a decrease in NF-κB activity. Say something about the significance of this finding regarding GVHD.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 739-739
Author(s):  
Vijay P. S. Rawat ◽  
Natalia Arseni ◽  
Farid Ahmed ◽  
Medhanie A. Mulaw ◽  
Silvia Thoene ◽  
...  

Abstract Abstract 739 Recent studies suggest that a variety of regulatory molecules active in embryonic development such as clustered and non-clustered homeobox genes play an important role in normal and malignant hematopoiesis. Since it was shown that the Xvent-2 homeobox gene is part of the BMP-4 signalling pathway in Xenopus, it is of particular interest to examine the expression profile and function of its only recently discovered human homologue VENTX in hematopoietic development. Expression of the VENTX gene was analyzed in normal human hematopoiesis and AML patients samples by microarray and qPCR. To test the impact of the constitutive expression of VENTX on human progenitor cells, CD34+ cord blood (CB) cells were retrovirally transduced with VENTX or the empty control vector and analyzed using in vitro and in vivo assays. So far we and others have not been able to identify a murine Xenopus xvent gene homologue. However, we were able to document the expression of this gene by qPCR in human lineage positive hematopoietic subpopulations. Amongst committed progenitors VENTX was significantly 13-fold higher expressed in CD33+ BM myeloid cells (4/4 positive) compared to CD19+ BM lymphoid cells (5/7 positive, p=0.01). Of note, expression of VENTX was negligible in normal CD34+/CD38− but detectable in CD34+ BM human progenitor cells. In contrast to this, leukemic CD34+/CD38− from AML patients (n=3) with translocation t(8,21) showed significantly elevated expression levels compared to normal CD34+ BM cells (n=5) (50-fold higher; p≤0.0001). Furthermore, patients with normal karyotype NPM1c+/FLT3-LM− (n=9), NPM1c−/FLT3-LM+ (n=8) or patients with t(8;21) (n=9) had an >100-fold higher expression of VENTX compared to normal CD34+ BM cells and a 5- to 7.8-fold higher expression compared to BM MNCs. Importantly, lentivirus-mediated long-term silencing of VENTX in human AML cell lines (mRNA knockdown between 58% and 75%) led to a significant, reduction in cell number compared to the non-silencing control construct (>79% after 120h). Suggesting that growth of human leukemic cell lines depends on VENTX expression in vitro. As we observed that VENTX is aberrantly expressed in leukemic CD34+ cells with negligible expression in normal counterparts, we assessed the impact of forced VENTX gene expression in normal CD34+ human progenitor cells on the transcription program. Gene expression and pathway analysis demonstrated that in normal CD34+ cells enforced expression of VENTX initiates genes associated with myeloid development (CD11b, CD125, CD9,CD14 and M-CSF), and downregulates genes involved in early lymphoid development (IL-7, IL-9R, LEF1/TCF and C-JUN) and erythroid development such as EPOR, CD35 and CD36. We then tested whether enforced expression of VENTX in CD34+ cells is able to alter the hematopoietic development of early human progenitors as indicated by gene expression and pathway analyses. Functional analyses confirmed that aberrant expression of VENTX in normal CD34+ human progenitor cells induced a significant increase in the number of myeloid colonies compared to the GFP control with 48 ± 6.5 compared to 28.9 ± 4.8 CFU-G per 1000 initially plated CD34+ cells (n=11; p=0.03) and complete block in erythroid colony formation with an 81% reduction of the number of BFU-E compared to the control (n=11; p<0.003). In a feeder dependent co-culture system, VENTX impaired the development of B-lymphoid cells. In the NOD/SCID xenograft model, VENTX expression in CD34+ CB cells promoted generation of myeloid cells with an over 5-fold and 2.5-fold increase in the proportion of human CD15+ and CD33+ primitive myeloid cells compared to the GFP control (n=5, p=0.01). Summary: Overexpression of VENTX perturbs normal hematopoietic development, promotes generation of myeloid cells and impairs generation of lymphoid cells in vitro and in vivo. Whereas VENTX depletion in human AML cell lines impaired their growth.Taken together, these data extend our insights into the function of human embryonic mesodermal factors in human hematopoiesis and indicate a role of VENTX in normal and malignant myelopoiesis. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2000 ◽  
Vol 96 (13) ◽  
pp. 4300-4306 ◽  
Author(s):  
Patrizia Rovere ◽  
Giuseppe Peri ◽  
Fausto Fazzini ◽  
Barbara Bottazzi ◽  
Andrea Doni ◽  
...  

Pentraxins are acute-phase proteins produced in vivo during inflammatory reactions. Classical short pentraxins, C-reactive protein, and serum amyloid P component are generated in the liver in response to interleukin (IL)–6. The long pentraxin PTX3 is produced in tissues under the control of primary proinflammatory signals, such as lipopolysaccharide, IL-1β, and tumor necrosis factor-α, which also promote maturation of dendritic cells (DCs). Cell death commonly occurs during inflammatory reactions. In this study, it is shown that PTX3 specifically binds to dying cells. The binding was dose dependent and saturable. Recognition was restricted to extranuclear membrane domains and to a chronological window after UV irradiation or after CD95 cross-linking–induced or spontaneous cell death in vitro. PTX3 bound to necrotic cells to a lesser extent. Human DCs failed to internalize dying cells in the presence of PTX3, while they took up normally soluble or inert particulate substrates. These results suggest that PTX3 sequesters cell remnants from antigen-presenting cells, possibly contributing to preventing the onset of autoimmune reactions in inflamed tissues.


Blood ◽  
2000 ◽  
Vol 96 (13) ◽  
pp. 4300-4306 ◽  
Author(s):  
Patrizia Rovere ◽  
Giuseppe Peri ◽  
Fausto Fazzini ◽  
Barbara Bottazzi ◽  
Andrea Doni ◽  
...  

Abstract Pentraxins are acute-phase proteins produced in vivo during inflammatory reactions. Classical short pentraxins, C-reactive protein, and serum amyloid P component are generated in the liver in response to interleukin (IL)–6. The long pentraxin PTX3 is produced in tissues under the control of primary proinflammatory signals, such as lipopolysaccharide, IL-1β, and tumor necrosis factor-α, which also promote maturation of dendritic cells (DCs). Cell death commonly occurs during inflammatory reactions. In this study, it is shown that PTX3 specifically binds to dying cells. The binding was dose dependent and saturable. Recognition was restricted to extranuclear membrane domains and to a chronological window after UV irradiation or after CD95 cross-linking–induced or spontaneous cell death in vitro. PTX3 bound to necrotic cells to a lesser extent. Human DCs failed to internalize dying cells in the presence of PTX3, while they took up normally soluble or inert particulate substrates. These results suggest that PTX3 sequesters cell remnants from antigen-presenting cells, possibly contributing to preventing the onset of autoimmune reactions in inflamed tissues.


Sign in / Sign up

Export Citation Format

Share Document