scholarly journals Mechanisms of enhanced thrombus formation in cerebral microvessels of mice expressing hemoglobin-S

Blood ◽  
2011 ◽  
Vol 117 (15) ◽  
pp. 4125-4133 ◽  
Author(s):  
Felicity N. E. Gavins ◽  
Janice Russell ◽  
Elena L. Senchenkova ◽  
Lidiana De Almeida Paula ◽  
Amílcar S. Damazo ◽  
...  

Abstract The microvasculature assumes an inflammatory and procoagulant state in a variety of different diseases, including sickle cell disease (SCD), which may contribute to the high incidence of ischemic stroke in these patients. This study provides evidence for accelerated thrombus formation in arterioles and venules in the cerebral vasculature of mice that express hemoglobin-S (βs mice). Enhanced microvascular thrombosis in βs mice was blunted by immunologic or genetic interventions that target tissue factor, endothelial protein C receptor, activated protein C, or thrombin. Platelets from βs mice also exhibited enhanced aggregation velocity after stimulation with thrombin but not ADP. Neutropenia also protected against the enhanced thrombosis response in βs mice. These results indicate that the cerebral microvasculature is rendered vulnerable to thrombus formation in βs mice via a neutrophil-dependent mechanism that is associated with an increased formation of and enhanced platelet sensitivity to thrombin.

2010 ◽  
Vol 103 (06) ◽  
pp. 1239-1244 ◽  
Author(s):  
Miguel Centelles ◽  
Cristina Puy ◽  
Jacinto Lopez-Sagaseta ◽  
Kenji Fukudome ◽  
Ramón Montes ◽  
...  

SummaryThe endothelial protein C receptor (EPCR) plays an anticoagulant role by improving protein C activation. Although low levels of activated protein C (APC) constitute a thrombosis risk factor, the relationship between modulating EPCR function and thrombosis has not been addressed so far. Monoclonal antibodies (mAb) against murine EPCR were raised, and their ability to block protein C/APC binding was tested. The ferric chloride carotid artery injury model in mice was chosen to test the effect of anti-EPCR mAb on thrombus formation. The time to total occlusion of the vessel was analysed in three groups, given an isotype control mAb (IC), a blocking (RCR-16) or a non-blocking (RCR-20) anti-EPCR mAb. RCR-16 prevented the interaction between protein C/APC and EPCR as demonstrated by surface plasmon resonance and flow cytometry, and inhibited the activation of protein C on the endothelium. IC and RCR-20 were unable to induce such effects. In vivo, RCR-16 shortened the time to total vessel occlusion with respect to IC [13.4 ± 1.0 (mean ± SD) and 17.8 ± 3.2 minutes, respectively, p<0.001]. Occlusive thrombi lasting for more than one hour were observed in all RCR-16-treated animals, but only in 43% of IC-treated ones. Results with RCR-20 were indistinguishable from those observed with IC. For the first time, a direct relationship between blocking EPCR and thrombosis is demonstrated. Blocking anti-EPCR autoantibodies can predispose to thrombosis episodes and may constitute a new therapeutic target.


Author(s):  
Di Ren ◽  
Julia Fedorova ◽  
Kayla Davitt ◽  
Tran Ngoc Van Le ◽  
John H Griffin ◽  
...  

Background: Activated protein C (APC) is a plasma serine protease with anticoagulant and anti-inflammatory activities. Endothelial protein C receptor (EPCR) is associated with APC's activity and mediates its downstream signaling events. APC exerts cardioprotective effects during ischemia and reperfusion (I/R). This study aims to characterize the role of the APC-EPCR axis in ischemic insults in aging. Methods: Young (3-4 months) and aged (24-26 months) wild type C57BL/6J mice, as well as EPCR point mutation (EPCR R84A/R84A ) knock-in C57BL/6J mice incapable of interaction with APC and its wild type of littermate C57BL/6J mice, were subjected to I/R. Wild type APC, signaling-selective APC-2Cys, or anticoagulant-selective APC-E170A were administrated before reperfusion. Results: The results demonstrated that cardiac I/R reduces APC activity, and the APC activity was impaired in the aged versus young hearts possibly attributable to the declined EPCR level with aging. Serum EPCR measurement showed that I/R triggered the shedding of membrane EPCR into circulation, while administration of APC attenuated the I/R-induced EPCR shedding in both young and aged hearts. Subsequent echocardiography showed that APC and APC-2Cys but not APC-E170A ameliorated cardiac dysfunction during I/R in both young and aged mice. Importantly, APC elevated the resistance of the aged heart to ischemic insults through stabilizing EPCR. However, all these cardioprotective effects of APC were blunted in the EPCR R84A/R84A mice versus its wild-type littermates. The ex vivo working heart and metabolomics results demonstrated that AMP-activated protein kinase (AMPK) mediates acute adaptive response while protein kinase B (AKT) is involved in chronic metabolic programming in the hearts with APC treatment. Conclusions: I/R stress causes shedding of the membrane EPCR in the heart, and administration of APC prevents I/R-induced cardiac EPCR shedding that is critical for limiting cardiac damage in aging.


2014 ◽  
Vol 34 (suppl_1) ◽  
Author(s):  
Sanjana Dayal ◽  
Sean X Gu ◽  
Katinan M Wilson ◽  
Ryan Hutchins ◽  
Steven R Lentz

In vitro studies have suggested that reactive oxygen species such as superoxide can produce prothrombotic effects, including enhanced platelet activation, increased tissue factor (TF) expression, and an oxidative modification in thrombomodulin impairing its capacity to enhance the generation of activated protein C (APC) by thrombin. It is not known, however, if elevated levels of superoxide accelerate susceptibility to experimental thrombosis in vivo . We used mice genetically deficient in superoxide dismutase-1 (SOD1, an antioxidant enzyme that dismutates superoxide to hydrogen peroxide), to test the hypothesis that lack of SOD1 enhances susceptibility to thrombosis. Susceptibility to carotid artery thrombosis in a photochemical injury model demonstrated that Sod1-/- mice formed stable occlusions significantly faster than Sod1+/+ mice (P<0.05). In an inferior vena cava (IVC) stasis model Sod1- /- mice developed significantly larger thrombi 48 hours after IVC ligation (P<0.05 vs. Sod1+/+ mice). After activation with thrombin (0.5 U/ml) or convulxin (200 ng/ml), no differences in surface expression of P-selectin or binding of fibrinogen were observed between platelets from Sod1-/- and Sod1+/+ mice. The expression of TF mRNA in lung measured by real time qPCR showed similar levels in Sod1-/- and Sod1 +/+ mice. However, the activation of exogenous protein C by thrombin in lung homogenates was decreased in Sod1 -/- mice (P<0.05 vs. Sod1 +/+ mice). Further, in vivo generation of activated protein C in response to thrombin (40 U/Kg) infusion was significantly lower in Sod1-/- mice (P<0.05 vs. Sod1+/+ mice). No differences in mRNA levels for thrombomodulin or endothelial protein C receptor were detected in Sod1 -/- mice vs. Sod1 +/+ mice, suggesting that altered generation of activated protein C in Sod1-/- mice may be related to a direct oxidative effect on thrombomodulin. In accordance, thrombomodulin treated with xanthine/hypoxanthine showed 40% loss of ability to activate protein C that was overcome by addition of SOD and catalase (P<0.05). We conclude that endogenous SOD1 in mice protects from impaired generation of activated protein C and accelerated thrombosis.


Rheumatology ◽  
2019 ◽  
Vol 58 (10) ◽  
pp. 1850-1860 ◽  
Author(s):  
Meilang Xue ◽  
Suat Dervish ◽  
Kelly J McKelvey ◽  
Lyn March ◽  
Fang Wang ◽  
...  

Abstract Objectives To investigate whether activated protein C (APC), a physiological anticoagulant can inhibit the inflammatory/invasive properties of immune cells and rheumatoid arthritis synovial fibroblasts (RASFs) in vitro and prevent inflammatory arthritis in murine antigen-induced arthritis (AIA) and CIA models. Methods RASFs isolated from synovial tissues of patients with RA, human peripheral blood mononuclear cells (PBMCs) and mouse thymus cells were treated with APC or TNF-α/IL-17 and the following assays were performed: RASF proliferation and invasion by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and cell invasion assays, respectively; cytokines and signalling molecules using ELISA or western blot; Th1 and Th17 phenotypes in human PBMCs or mouse thymus cells by flow cytometry. The in vivo effect of APC was evaluated in AIA and CIA models. Results In vitro, APC inhibited IL-1β, IL-17 and TNF-α production, IL-17-stimulated cell proliferation and invasion and p21 and nuclear factor κB activation in RASFs. In mouse thymus cells and human PBMCs, APC suppressed Th1 and Th17 phenotypes. In vivo, APC inhibited pannus formation, cartilage destruction and arthritis incidence/severity in both CIA and AIA models. In CIA, serum levels of IL-1β, IL-6, IL-17, TNF-α and soluble endothelial protein C receptor were significantly reduced by APC treatment. Blocking endothelial protein C receptor, the specific receptor for APC, abolished the early or preventative effect of APC in AIA. Conclusion APC prevents the onset and development of arthritis in CIA and AIA models via suppressing inflammation, Th1/Th17 phenotypes and RASF invasion, which is likely mediated via endothelial protein C receptor.


Sign in / Sign up

Export Citation Format

Share Document