scholarly journals CalDAG-GEFI deficiency protects mice in a novel model of FcγRIIA-mediated thrombosis and thrombocytopenia

Blood ◽  
2011 ◽  
Vol 118 (4) ◽  
pp. 1113-1120 ◽  
Author(s):  
Moritz Stolla ◽  
Lucia Stefanini ◽  
Pierrette André ◽  
Timothy D. Ouellette ◽  
Michael P. Reilly ◽  
...  

AbstractPlatelet activation via Fcγ receptor IIA (FcγRIIA) is a critical event in immune-mediated thrombocytopenia and thrombosis syndromes (ITT). We recently identified signaling by the guanine nucleotide exchange factor CalDAG-GEFI and the adenosine diphosphate receptor P2Y12 as independent pathways leading to Rap1 small GTPase activation and platelet aggregation. Here, we evaluated the contribution of CalDAG-GEFI and P2Y12 signaling to platelet activation in ITT. Mice transgenic for the human FcγRIIA (hFcR) and deficient in CalDAG-GEFI−/− (hFcR/CDGI−/−) were generated. Compared with controls, aggregation of hFcR/CDGI−/− platelets or P2Y12 inhibitor-treated hFcR platelets required more than 5-fold and approximately 2-fold higher concentrations of a FcγRIIA stimulating antibody against CD9, respectively. Aggregation and Rap1 activation were abolished in P2Y12 inhibitor-treated hFcR/CDGI−/− platelets. For in vivo studies, a novel model for antibody-induced thrombocytopenia and thrombosis was established. FcγRIIA-dependent platelet thrombosis was induced by infusion of Alexa750-labeled antibodies to glycoprotein IX (CD42a), and pulmonary thrombi were detected by near-infrared imaging technology. Anti-GPIX antibodies dose-dependently caused thrombocytopenia and pulmonary thrombosis in hFcR-transgenic but not wild-type mice. CalDAG-GEFI-deficient but not clopidogrel-treated hFcR-transgenic mice were completely protected from ITT. In summary, we established a novel mouse model for ITT, which was used to identify CalDAG-GEFI as a potential new target in the treatment of ITT.

2014 ◽  
Vol 306 (5) ◽  
pp. R281-R290 ◽  
Author(s):  
Tyler S. Nelson ◽  
Ryan E. Akin ◽  
Michael J. Weiler ◽  
Timothy Kassis ◽  
Jeffrey A. Kornuta ◽  
...  

The ability to quantify collecting vessel function in a minimally invasive fashion is crucial to the study of lymphatic physiology and the role of lymphatic pump function in disease progression. Therefore, we developed a highly sensitive, minimally invasive research platform for quantifying the pumping capacity of collecting lymphatic vessels in the rodent tail and forelimb. To achieve this, we have integrated a near-infrared lymphatic imaging system with a feedback-controlled pressure cuff to modulate lymph flow. After occluding lymphatic flow by inflating a pressure cuff on the limb or tail, we gradually deflate the cuff while imaging flow restoration proximal to the cuff. Using prescribed pressure applications and automated image processing of fluorescence intensity levels in the vessels, we were able to noninvasively quantify the effective pumping pressure (Peff, pressure at which flow is restored after occlusion) and vessel emptying rate (rate of fluorescence clearance during flow occlusion) of lymphatics in the rat. To demonstrate the sensitivity of this system to changes in lymphatic function, a nitric oxide (NO) donor cream, glyceryl trinitrate ointment (GTNO), was applied to the tails. GTNO decreased Peff of the vessels by nearly 50% and the average emptying rate by more than 60%. We also demonstrate the suitability of this approach for acquiring measurements on the rat forelimb. Thus, this novel research platform provides the first minimally invasive measurements of Peff and emptying rate in rodents. This experimental platform holds strong potential for future in vivo studies that seek to evaluate changes in lymphatic health and disease.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 91-91
Author(s):  
Wolfgang Bergmeier ◽  
David S Paul ◽  
Lucia Stefanini ◽  
Raymond F. Robledo ◽  
E. Ricky Chan ◽  
...  

Abstract The small GTPase RAP1 is critical for platelet activation and thrombus formation. RAP1 activity in platelets is controlled by the guanine nucleotide exchange factor CalDAG-GEFI and an unknown regulator operating downstream of the ADP receptor, P2Y12, the target of antithrombotic therapy. Here we provide evidence that the GTPase-activating protein, RASA3, is a critical inhibitor of platelet activation and the missing link in the P2Y12/RAP1 signaling pathway. Genetic inactivation of Rasa3 led to premature activation and markedly reduced lifespan of circulating platelets in mice (t1/2=14 hrs vs. 55 hrs in controls). The increased platelet turnover and the resulting thrombocytopenia were reversed by concomitant deletion of CalDAG-GEFI. Rasa3 mutant platelets were hyperresponsive to agonist stimulation, both in vitro and in vivo. Importantly, activation of Rasa3 mutant platelets occurred independently of ADP feedback signaling and was insensitive to inhibitors of P2Y12 or PI3 kinase. Thus, constitutively active RASA3 ensures that circulating platelets remain quiescent by restraining CalDAG-GEFI/RAP1 signaling. At sites of vascular injury, P2Y12 signaling is required to inhibit RASA3 and enable sustained RAP1-dependent platelet activation and thrombus formation. Our findings provide critical mechanistic insights for the antithrombotic effect of P2Y12 inhibitors and may lead to improved diagnosis and treatment of platelet-related disorders. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Liping Huang ◽  
Yiyi Zhang ◽  
Yanan Li ◽  
Fanling Meng ◽  
Hongyu Li ◽  
...  

AbstractThe highly immunosuppressive microenvironment after surgery has a crucial impact on the recurrence and metastasis in breast cancer patients. Programmable delivery of immunotherapy-involving combinations through a single drug delivery system is highly promising, yet greatly challenging, to reverse postoperative immunosuppression. Here, an injectable hierarchical gel matrix, composed of dual lipid gel (DLG) layers with different soybean phosphatidylcholine/glycerol dioleate mass ratios, was developed to achieve the time-programmed sequential delivery of combined cancer immunotherapy. The outer layer of the DLG matrix was thermally responsive and loaded with sorafenib-adsorbed graphene oxide (GO) nanoparticles. GO under manually controlled near-infrared irradiation generated mild heat and provoked the release of sorafenib first to reeducate tumor-associated macrophages (TAMs) and promote an immunogenic tumor microenvironment. The inner layer, loaded with anti-CD47 antibody (aCD47), could maintain the gel state for a much longer time, enabling the sustained release of aCD47 afterward to block the CD47-signal regulatory protein α (SIRPα) pathway for a long-term antitumor effect. In vivo studies on 4T1 tumor-bearing mouse model demonstrated that the DLG-based strategy efficiently prevented tumor recurrence and metastasis by locally reversing the immunosuppression and synergistically blocking the CD47-dependent immune escape, thereby boosting the systemic immune responses.


2018 ◽  
Author(s):  
Wei Chen ◽  
ChiAn Cheng ◽  
Emily Cosco ◽  
Shyam Ramakrishnan ◽  
Jakob Lingg ◽  
...  

Tissue is translucent to shortwave infrared (SWIR) light, rendering optical imaging superior in this region. However, the widespread use of optical SWIR imaging has been limited, in part, by the lack of bright, biocompatible contrast agents that absorb and emit light above 1000 nm. J-aggregation offers a means to transform stable, near-infrared (NIR) fluorophores into red-shifted SWIR contrast agents. Here we demonstrate that hollow mesoporous silica nanoparticles (HMSNs) can template the J-aggregation of NIR fluorophore IR-140 to result in nanomaterials that absorb and emit SWIR light. The J-aggregates inside PEGylated HMSNs are stable for multiple weeks in buffer and enable high resolution imaging <i>in vivo</i>with 980 nm excitation.


Biomolecules ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1819
Author(s):  
Michael A. Turner ◽  
Thinzar M. Lwin ◽  
Siamak Amirfakhri ◽  
Hiroto Nishino ◽  
Robert M. Hoffman ◽  
...  

A major barrier to the diagnosis and effective treatment of solid-tumor cancers is the difficulty in detection and visualization of tumor margins in primary and metastatic disease. The use of fluorescence can augment the surgeon’s ability to detect cancer and aid in its resection. Several cancer types express carcinoembryonic antigen (CEA) including colorectal, pancreatic and gastric cancer. Antibodies to CEA have been developed and tagged with near-infrared fluorescent dyes. This review article surveyed the use of CEA antibodies conjugated to fluorescent probes for in vivo studies since 1990. PubMed and Google Scholar databases were queried, and 900 titles and abstracts were screened. Fifty-nine entries were identified as possibly meeting inclusion/exclusion criteria and were reviewed in full. Forty articles were included in the review and their citations were screened for additional entries. A total of 44 articles were included in the final review. The use of fluorescent anti-CEA antibodies has been shown to improve detection and resection of tumors in both murine models and clinically. The cumulative results indicate that fluorescent-conjugated anti-CEA antibodies have important potential to improve cancer diagnosis and surgery. In an emerging technology, anti-CEA fluorescent antibodies have also been successfully used for photoimmunotherapy treatment for cancer.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 212-212
Author(s):  
S. Khatri ◽  
J. Hansen ◽  
M. H. Clausen ◽  
T. W. Kragstrup ◽  
S. C. Hung ◽  
...  

Background:Rheumatoid arthritis (RA) is an immune mediated inflammatory disease with autoimmune features, including antibodies to citrullinated proteins and peptides (ACPAs). Several in vitro studies have suggested a pathogenic role of ACPAs in RA. However, in vivo proof of this concept has been hampered by the lack of therapeutic strategies to reduce or deplete ACPA in serum and synovial fluid. Previously, we constructed a chitosan-hyaluronic acid nanoparticle formulation with the ability to use neutrophil recruitment as a delivery mechanism to inflamed joints. Specifically, nanoparticles got phagocytosed and then released to synovial fluid upon death of the short-lived neutrophilsObjectives:We hypothesized that reducing ACPA levels would have a therapeutic effect by blocking cytokine production. In this study, we prepared and tested a series of therapeutic nanoparticles for specific targeting of ACPA in synovial fluid.Methods:Nanoparticles were prepared by the microdroplet method and then decorated with synthetic cyclic citrullinated peptide aptamer PEP2, PEG/hexanoic acid and fluorophore (Cy5.5). Nanoparticles were characterized by dynamic light scattering (DLS), scanning electron microscopy (SEM) and high-performance liquid chromatography (HPLC). Nanoparticles were then used in a series of in vitro assays, including cell uptake with flow cytometry (FACS) detection, and in vivo studies including disease activity scores, cytokine measurements and near-infrared imaging.Results:We screened a series of citrullinated peptide epitopes and identified a fibrinogen-derived 21-amino-acid-long citrullinated peptide showing high selectivity toward autoantibodies in RA samples. We incorporated this aptamer in the chitosan-hyaluronic acid nanoparticle formulation previously described. Average nanoparticle size was 230 nm ± 10 nm by DLS and SEM; z potential was -0.0012. Purity by HPLC was over 95%. Attachment efficiency of the aptamer was 92% by HPLC. FACS study showed selective uptake of Cy5.5 labelled aptamer-nanoparticle conjugates by neutrophils in the concentration range 0.5-4 nM. Similar to previous studies,1there was no apparent immunogenicity for this nanoparticle formulation measured by cytokine secretion from human peripheral blood leukocytes. In vivo, over 50% reduction of disease activity was achieved in three weeks treatment using as little as 1 nM drug candidate (dosed every 48 hours) in the collagen-induced (CIA) mouse model of RA (N=30; p<0.001 for treated vs placebo). Same was observed in the serum transfer model (N=10). The aptamer-nanoparticle conjugate significantly reduced IL-6 and TNFα levels in the mouse sera (p<0.01). The effects were not inferior to tocilizumab treated controls (N=30). To confirm mode of action, we applied Cy5.5-labelled aptamer-nanoparticles in the collagen-induced mouse model (N=10) and analyzed the resulting uptake by near-infrared imaging. We confirmed over 6-fold higher signal accumulation in inflamed vs healthy joints (p<0.01), which strongly supports the fact that the aptamer is highly specific to the inflammatory process.Conclusion:Overall, we have designed a first-in-class therapeutic nanoparticle drug for specific targeting of anti-citrullinated protein antibodies. The marked effect of this nanoparticle observed in vivo holds promise for targeting ACPAs as a therapeutic option in RA.References:[1]Khatri S, Hansen J, Mendes AC, Chronakis IS, Hung S-C, Mellins ED, Astakhova K. Bioconjug Chem. 2019 Oct 16;30(10):2584–259Disclosure of Interests:Sangita Khatri: None declared, Jonas Hansen: None declared, Mads Hartvig Clausen Shareholder of: iBio Tech ApS, Tue Wenzel Kragstrup Shareholder of: iBio Tech ApS, Consultant of: Bristol-Myers Squibb, Speakers bureau: TWK has engaged in educational activities talking about immunology in rheumatic diseases receiving speaking fees from Pfizer, Bristol-Myers Squibb, Eli Lilly, Novartis, and UCB., Shu-Chen Hung: None declared, Elisabeth Mellins: None declared, Kira Astakhova: None declared


2019 ◽  
Vol 116 (41) ◽  
pp. 20296-20302 ◽  
Author(s):  
Zhixuan Zhou ◽  
Jiangping Liu ◽  
Juanjuan Huang ◽  
Thomas W. Rees ◽  
Yiliang Wang ◽  
...  

Photodynamic therapy (PDT) is a treatment procedure that relies on cytotoxic reactive oxygen species (ROS) generated by the light activation of a photosensitizer. The photophysical and biological properties of photosensitizers are vital for the therapeutic outcome of PDT. In this work a 2D rhomboidal metallacycle and a 3D octahedral metallacage were designed and synthesized via the coordination-driven self-assembly of a Ru(II)-based photosensitizer and complementary Pt(II)-based building blocks. The metallacage showed deep-red luminescence, a large 2-photon absorption cross-section, and highly efficient ROS generation. The metallacage was encapsulated into an amphiphilic block copolymer to form nanoparticles to encourage cell uptake and localization. Upon internalization into cells, the nanoparticles selectively accumulate in the lysosomes, a favorable location for PDT. The nanoparticles are almost nontoxic in the dark, and can efficiently destroy tumor cells via the generation of ROS in the lysosomes under 2-photon near-infrared light irradiation. The superb PDT efficacy of the metallacage-containing nanoparticles was further validated by studies on 3D multicellular spheroids (MCS) and in vivo studies on A549 tumor-bearing mice.


2020 ◽  
Vol 6 (44) ◽  
pp. eabb6165
Author(s):  
Lukas Pfeifer ◽  
Nong V. Hoang ◽  
Maximilian Scherübl ◽  
Maxim S. Pshenichnikov ◽  
Ben L. Feringa

Light-controlled artificial molecular machines hold tremendous potential to revolutionize molecular sciences as autonomous motion allows the design of smart materials and systems whose properties can respond, adapt, and be modified on command. One long-standing challenge toward future applicability has been the need to develop methods using low-energy, low-intensity, near-infrared light to power these nanomachines. Here, we describe a rotary molecular motor sensitized by a two-photon absorber, which efficiently operates under near-infrared light at intensities and wavelengths compatible with in vivo studies. Time-resolved spectroscopy was used to gain insight into the mechanism of energy transfer to the motor following initial two-photon excitation. Our results offer prospects toward in vitro and in vivo applications of artificial molecular motors.


Sign in / Sign up

Export Citation Format

Share Document