scholarly journals Microfluidic kit-on-a-lid: a versatile platform for neutrophil chemotaxis assays

Blood ◽  
2012 ◽  
Vol 120 (14) ◽  
pp. e45-e53 ◽  
Author(s):  
Eric K. Sackmann ◽  
Erwin Berthier ◽  
Edmond W.K. Young ◽  
Miriam A. Shelef ◽  
Sarah A. Wernimont ◽  
...  

Abstract Improvements in neutrophil chemotaxis assays have advanced our understanding of the mechanisms of neutrophil recruitment; however, traditional methods limit biologic inquiry in important areas. We report a microfluidic technology that enables neutrophil purification and chemotaxis on-chip within minutes, using nanoliters of whole blood, and only requires a micropipette to operate. The low sample volume requirements and novel lid-based method for initiating the gradient of chemoattractant enabled the measurement of human neutrophil migration on a cell monolayer to probe the adherent and migratory states of neutrophils under inflammatory conditions; mouse neutrophil chemotaxis without sacrificing the animal; and both 2D and 3D neutrophil chemotaxis. First, the neutrophil chemotaxis on endothelial cells revealed 2 distinct neutrophil phenotypes, showing that endothelial cell-neutrophil interactions influence neutrophil chemotactic behavior. Second, we validated the mouse neutrophil chemotaxis assay by comparing the adhesion and chemotaxis of neutrophils from chronically inflamed and wild-type mice; we observed significantly higher neutrophil adhesion in blood obtained from chronically inflamed mice. Third, we show that 2D and 3D neutrophil chemotaxis can be directly compared using our technique. These methods allow for new avenues of research while reducing the complexity, time, and sample volume requirements to perform neutrophil chemotaxis assays.

TECHNOLOGY ◽  
2016 ◽  
Vol 04 (02) ◽  
pp. 104-109 ◽  
Author(s):  
Jiandong Wu ◽  
Craig Hillier ◽  
Paul Komenda ◽  
Ricardo Lobato de Faria ◽  
Susy Santos ◽  
...  

Neutrophil migration and chemotaxis are fundamentally important biological processes and have direct relevance to various health problems. Microfluidic devices provide useful experimental tools for the quantitative analysis of neutrophil chemotaxis in controlled microenvironments. However, such experiments often require specialized research facilities and lengthy cell preparation from a large amount of blood. In this paper, we report a new, yet simple, all-on-chip method for the magnetic isolation of untouched neutrophils directly from small volumes of blood, followed by chemotaxis testing on the same microfluidic device. Furthermore, we incorporated a cell-docking structure to the microfluidic device for better control of the cells’ initial positions before the chemotaxis test and for improved data analysis. The whole experiment can be performed in less than 25 minutes. We successfully validated this method by testing neutrophil chemotaxis to both purified chemoattractant (i.e. fMLP) and clinical samples (sputum from patients with Chronic Obstructive Pulmonary Disease, COPD). Thus, the “all-on-chip” method can be a useful tool for research and clinical applications that require rapid and accurate chemotaxis testing of untouched neutrophils.


1984 ◽  
Vol 52 (02) ◽  
pp. 134-137 ◽  
Author(s):  
Yaacov Matzner ◽  
Gerard Marx ◽  
Ruth Drexler ◽  
Amiram Eldor

SummaryClinical observations have shown that heparin has antiinflammatory activities. The effect of heparin on neutrophil chemotaxis was evaluated in vitro in the Boyden Chamber. This method enabled differentiation between the direct effects of heparin on neutrophil migration and locomotion, and its effects on chemotactic factors. Heparin inhibited both the random migration and directed locomotion of human neutrophils toward zymosan-activated serum (ZAS) and F-met-leu-phe (FMLP). Inhibition was found to be dependent on the concentrations of the heparin and of the chemotactic factors. No specific binding of heparin to the neutrophils could be demonstrated, and heparin’s inhibitory effects were eliminated by simple washing of the cells. When added directly to the chamber containing chemotactic factor, heparin inhibited the chemotactic activity of ZAS but not that of FMLP, suggesting a direct inhibitory effect against C5a, the principal chemotactic factor in ZAS.Experiments performed with low-molecular-weight heparin, N-desulfated heparin, dextran sulfate, chondroitin sulfate and dextran indicated that the inhibitory effects of heparin on neutrophil chemotaxis are not related to its anticoagulant activity, but probably depend on the degree of sulfation of the heparin molecule.


2019 ◽  
Vol 35 (6) ◽  
pp. 87-90
Author(s):  
S.V. Nikulin ◽  
V.A. Petrov ◽  
D.A. Sakharov

The real-time monitoring of electric capacitance (impedance spectroscopy) allowed obtaining evidence that structures which look like intestinal villi can be formed during the cultivation under static conditions as well as during the cultivation in microfluidic chips. It was shown in this work via transcriptome analysis that the Hh signaling pathway is involved in the formation of villus-like structures in vitro, which was previously shown for their formation in vivo. impedance spectroscopy, intestine, villi, electric capacitance, Hh The study was funded by the Russian Science Foundation (Project 16-19-10597).


2021 ◽  
Vol 22 (4) ◽  
pp. 1825
Author(s):  
Li Hao ◽  
Aaron J. Marshall ◽  
Lixin Liu

Bam32 (B cell adaptor molecule of 32 kDa) functions in the immune responses of various leukocytes. However, the role of neutrophil Bam32 in inflammation is entirely unknown. Here, we determined the role of Bam32 in chemokine CXCL2-induced neutrophil chemotaxis in three mouse models of neutrophil recruitment. By using intravital microscopy in the mouse cremaster muscle, we found that transmigrated neutrophil number, neutrophil chemotaxis velocity, and total neutrophil chemotaxis distance were increased in Bam32−/− mice when compared with wild-type (WT) mice. In CXCL2-induced mouse peritonitis, the total emigrated neutrophils were increased in Bam32−/− mice at 2 but not 4 h. The CXCL2-induced chemotaxis distance and migration velocity of isolated Bam32−/− neutrophils in vitro were increased. We examined the activation of small GTPases Rac1, Rac2, and Rap1; the levels of phospho-Akt2 and total Akt2; and their crosstalk with Bam32 in neutrophils. The deficiency of Bam32 suppressed Rap1 activation without changing the activation of Rac1 and Rac2. The pharmacological inhibition of Rap1 by geranylgeranyltransferase I inhibitor (GGTI298) increased WT neutrophil chemotaxis. In addition, the deficiency of Bam32, as well as the inhibition of Rap1 activation, increased the levels of CXCL2-induced Akt1/2 phosphorylation at Thr308/309 in neutrophils. The inhibition of Akt by SH-5 attenuated CXCL2-induced adhesion and emigration in Bam32−/− mice. Together, our results reveal that Bam32 has a suppressive role in chemokine-induced neutrophil chemotaxis by regulating Rap1 activation and that this role of Bam32 in chemokine-induced neutrophil recruitment relies on the activation of PI3K effector Akt.


2004 ◽  
Vol 72 (11) ◽  
pp. 6589-6596 ◽  
Author(s):  
Ricky L. Ulrich ◽  
David DeShazer ◽  
Harry B. Hines ◽  
Jeffrey A. Jeddeloh

ABSTRACT Numerous gram-negative bacterial pathogens regulate virulence factor expression by using a cell density mechanism termed quorum sensing (QS). An in silico analysis of the Burkholderia mallei ATCC 23344 genome revealed that it encodes at least two luxI and four luxR homologues. Using mass spectrometry, we showed that wild-type B. mallei produces the signaling molecules N-octanoyl-homoserine lactone and N-decanoyl-homoserine lactone. To determine if QS is involved in the virulence of B. mallei, we generated mutations in each putative luxIR homologue and tested the pathogenicities of the derivative strains in aerosol BALB/c mouse and intraperitoneal hamster models. Disruption of the B. mallei QS alleles, especially in RJ16 (bmaII) and RJ17 (bmaI3), which are luxI mutants, significantly reduced virulence, as indicated by the survival of mice who were aerosolized with 104 CFU (10 50% lethal doses [LD50s]). For the B. mallei transcriptional regulator mutants (luxR homologues), mutation of the bmaR5 allele resulted in the most pronounced decrease in virulence, with 100% of the challenged animals surviving a dose of 10 LD50s. Using a Syrian hamster intraperitoneal model of infection, we determined the LD50s for wild-type B. mallei and each QS mutant. An increase in the relative LD50 was found for RJ16 (bmaI1) (>967 CFU), RJ17 (bmaI3) (115 CFU), and RJ20 (bmaR5) (151 CFU) compared to wild-type B. mallei (<13 CFU). These findings demonstrate that B. mallei carries multiple luxIR homologues that either directly or indirectly regulate the biosynthesis of an essential virulence factor(s) that contributes to the pathogenicity of B. mallei in vivo.


2010 ◽  
Vol 298 (2) ◽  
pp. G255-G266 ◽  
Author(s):  
Takashi Mizushima ◽  
Makoto Sasaki ◽  
Tomoaki Ando ◽  
Tsuneya Wada ◽  
Mamoru Tanaka ◽  
...  

Mucosal vascular addressin cell adhesion molecule 1 (MAdCAM-1) is an important target in the treatment of inflammatory bowel disease (IBD). Recently, treatment of IBD with an antibody to α4β7-integrin, a ligand for MAdCAM-1, has been an intense focus of research. Our aim was to clarify the mechanism by which MAdCAM-1 is regulated via angiotensin II type 1 receptor (AT1R), and to verify if AT1R might be a novel target for IBD treatment. The role of AT1R in the expression of MAdCAM-1 in SVEC (a murine high endothelial venule cell) and MJC-1 (a mouse colonic endothelial cell) was examined following cytokine stimulation. We further evaluated the effect of AT1R on the pathogenesis of immune-mediated colitis using AT1R-deficient (AT1R−/−) mice and a selective AT1R blocker. AT1R blocker significantly suppressed MAdCAM-1 expression induced by TNF-α, but did not inhibit phosphorylation of p38 MAPK or of IκB that modulate MAdCAM-1 expression. However, NF-κB translocation into the nucleus was inhibited by these treatments. In a murine colitis model induced by dextran sulfate sodium, the degree of colitis, judged by body weight loss, histological damage, and the disease activity index, was much milder in AT1R−/− than in wild-type mice. The expression of MAdCAM-1 was also significantly lower in AT1R−/− than in wild-type mice. These results suggest that AT1R regulates the expression of MAdCAM-1 under colonic inflammatory conditions through regulation of the translocation of NF-κB into the nucleus. Furthermore, inhibition of AT1R ameliorates colitis in a mouse colitis model. Therefore, AT1R might be one of new therapeutic target of IBD via regulation of MAdCAM-1.


2004 ◽  
Vol 287 (4) ◽  
pp. H1730-H1739 ◽  
Author(s):  
Ron Zohar ◽  
Baoqian Zhu ◽  
Peter Liu ◽  
Jaro Sodek ◽  
C. A. McCulloch

Reperfusion-induced oxidative injury to the myocardium promotes activation and proliferation of cardiac fibroblasts and repair by scar formation. Osteopontin (OPN) is a proinflammatory cytokine that is upregulated after reperfusion. To determine whether OPN enhances fibroblast survival after exposure to oxidants, cardiac fibroblasts from wild-type (WT) or OPN-null (OPN−/−) mice were treated in vitro with H2O2to model reperfusion injury. Within 1 h, membrane permeability to propidium iodide (PI) was increased from 5 to 60% in OPN−/−cells but was increased to only 20% in WT cells. In contrast, after 1–8 h of treatment with H2O2, the percent of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-stained cells was more than twofold higher in WT than OPN−/−cells. Electron microscopy of WT cells treated with H2O2showed chromatin condensation, nuclear fragmentation, and cytoplasmic and nuclear shrinkage, which are consistent with apoptosis. In contrast, H2O2-treated OPN−/−cardiac fibroblasts exhibited cell and nuclear swelling and membrane disruption that are indicative of cell necrosis. Treatment of OPN−/−and WT cells with a cell-permeable caspase-3 inhibitor reduced the percentage of TUNEL staining by more than fourfold in WT cells but decreased staining in OPN−/−cells by ∼30%. Although the percentage of PI-permeable WT cells was reduced threefold, the percent of PI-permeable OPN−/−cells was not altered. Restoration of OPN expression in OPN−/−fibroblasts reduced the percentage of PI-permeable cells but not TUNEL staining after H2O2treatment. Thus H2O2-induced cell death in OPN-deficient cardiac fibroblasts is mediated by a caspase-3-independent, necrotic pathway. We suggest that the increased expression of OPN in the myocardium after reperfusion may promote fibrosis by protecting cardiac fibroblasts from cell death.


2008 ◽  
Vol 295 (1) ◽  
pp. G45-G53 ◽  
Author(s):  
Bin Hu ◽  
Lisa M. Colletti

Stem cell factor (SCF) and its receptor c-kit are important in hematopoiesis and cellular proliferation. c-kit has also been identified as a cell surface marker for progenitor cells. We have previously shown that there is a large reservoir of hepatic SCF, and this molecule plays a significant role in liver regeneration after 70% hepatectomy. In the current study, we further examined the expression of SCF and c-kit in acetaminophen (APAP)-induced liver injury in C57BL/6J mice or SCF-deficient sl-sld mice and their appropriate wild-type controls. Following APAP-induced liver injury, c-kit mRNA expression increased, with peak levels detected 48 h postinjury. Hepatic SCF mRNA levels after APAP injury were also increased, with peak levels seen 16 h post-APAP. The mortality rate in SCF-deficient mice treated with APAP was significantly higher than that of wild-type mice; furthermore, administration of exogenous SCF significantly reduced the mortality of APAP-treated wild-type mice. Bromodeoxyuridine incorporation experiments showed that SCF significantly increased hepatocyte proliferation at 48 and 72 h in APAP-treated mice. SCF inhibited APAP-induced hepatocyte apoptosis and increased Bcl-2 and Bcl-xL expression, suggesting that this decrease in hepatocyte apoptosis is mediated through Bcl-2 and Bcl-xL. In summary, SCF and c-kit expression was increased after APAP-induced liver injury. Administration of exogenous SCF reduces mortality in APAP-treated mice, increases hepatocyte proliferation, and prevents hepatocyte apoptosis induced by APAP, suggesting that these molecules are important in the liver's recovery from these injuries.


2010 ◽  
Vol 191 (4) ◽  
pp. 771-781 ◽  
Author(s):  
Alexander Ludwig ◽  
Grant P. Otto ◽  
Kirsi Riento ◽  
Emily Hams ◽  
Padraic G. Fallon ◽  
...  

We studied the function of plasma membrane microdomains defined by the proteins flotillin 1 and flotillin 2 in uropod formation and neutrophil chemotaxis. Flotillins become concentrated in the uropod of neutrophils after exposure to chemoattractants such as N-formyl-Met-Leu-Phe (fMLP). Here, we show that mice lacking flotillin 1 do not have flotillin microdomains, and that recruitment of neutrophils toward fMLP in vivo is reduced in these mice. Ex vivo, migration of neutrophils through a resistive matrix is reduced in the absence of flotillin microdomains, but the machinery required for sensing chemoattractant functions normally. Flotillin microdomains specifically associate with myosin IIa, and spectrins. Both uropod formation and myosin IIa activity are compromised in flotillin 1 knockout neutrophils. We conclude that the association between flotillin microdomains and cortical cytoskeleton has important functions during neutrophil migration, in uropod formation, and in the regulation of myosin IIa.


Sign in / Sign up

Export Citation Format

Share Document