The sixth sense: hematopoietic stem cells detect danger through purinergic signaling

Blood ◽  
2012 ◽  
Vol 120 (12) ◽  
pp. 2365-2375 ◽  
Author(s):  
Lara Rossi ◽  
Valentina Salvestrini ◽  
Davide Ferrari ◽  
Francesco Di Virgilio ◽  
Roberto M. Lemoli

Abstract Over the past decade, extracellular nucleotides (such as ATP and UTP) have emerged as key immunomodulators. This family of molecules, already known for its key metabolic functions, has been the focus of intense investigation that has unambiguously shown its crucial role as mediators of cell-to-cell communication. More recently, in addition to its involvement in inflammation and immunity, purinergic signaling has also been shown to modulate BM-derived stem cells. Extracellular nucleotides promote proliferation, CXCL12-driven migration, and BM engraftment of hematopoietic progenitor and stem cells. In addition, purinergic signaling acts indirectly on hematopoietic progenitor and stem cells by regulating differentiation and release of proinflammatory cytokines in BM-derived human mesenchymal stromal cells, which are part of the hematopoietic stem cell (HSC) niche. HSC research has recently blended into the field of immunology, as new findings highlighted the role played by immunologic signals (such as IFN-α, IFN-γ, or TNF-α) in the regulation of the HSC compartment. In this review, we summarize recent reports unveiling a previously unsuspected ability of HSCs to integrate inflammatory signals released by immune and stromal cells, with particular emphasis on the dual role of extracellular nucleotides as mediators of both immunologic responses and BM stem cell functions.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1436-1436
Author(s):  
Valentina Salvestrini ◽  
Sara Gulinelli ◽  
Roberta Zini ◽  
Luisa Caione ◽  
Giorgia Migliardi ◽  
...  

Abstract Abstract 1436 Poster Board I-459 Extracellular nucleotides adenosine and uridine triphosphates (ATP and UTP, respectively) are emerging as ubiquitous molecules involved in a wide variety of biological responses and their biological effects are mediated by specific plasma membrane receptors, P2 receptors (P2R). Previously, we showed that extracellular nucleotides stimulate the proliferation and engraftment potential of normal human hematopoietic stem cells. In this study, we assessed whether P2R are expressed on acute myeloblastic leukemia (AML) cells and whether their engagement modulates leukemic cell functions. We show that AML cells express several functional P2R subtypes at the molecular and protein level. Stimulation of AML cells by extracellular nucleotides induced intracellular Ca2+ concentration increases. Furthermore, gene expression profiling revealed that leukemic cells stimulated with ATP underwent a down-regulation of genes involved in cell proliferation and migration whereas those involved in cell cycle inhibition were strongly up-regulated. At the functional level, the clonogenic efficiency of leukemic blasts and CD34+CD38− leukemic stem/progenitor cells was significantly inhibited by the addition of ATP and, to a higher extent, by the stable analogs INS415 and INS973. We also observed a pronounced inhibitory effect of triphosphate nucleotides on spontaneous migration of AML cells and in response to CXCL12.In vivo, xenotransplant experiments demonstrated that the homing and the engraftment capacity of human AML blasts and leukemic stem cells to NOD/SCID/IL-2RGamma-Null mice was significantly inhibited by pre-treatment with ATP, UTP and INS415 and INS973 analogues. Thus, our data show that purinergic signaling modulates leukemic cells in a opposite way than normal cells. Characterization of purinergic signalling in leukemia may help the better understading of the mechanism of neoplastic transformation and tumor progression. Disclosures Di Virgilio: F. Di Virgilio serves as a consultant for Cordex Pharma Inc. (USA) involved in the development of “P2 receptor-based drugs”.: Consultancy; F. Di Virgilio serves as a consultant for Affectis Pharmaceuticals AG (Germany), involved in the development of “P2 receptor-based drugs”.: Consultancy.


Blood ◽  
1993 ◽  
Vol 81 (2) ◽  
pp. 365-372 ◽  
Author(s):  
JP Wineman ◽  
S Nishikawa ◽  
CE Muller-Sieburg

We show here that mouse pluripotent hematopoietic stem cells can be maintained in vitro on stroma for at least 3 weeks at levels close to those found in bone marrow. The extent of stem cell maintenance is affected by the nature of the stromal cells. The stromal cell line S17 supported stem cells significantly better than heterogeneous, primary stromal layers or the stromal cell line Strofl-1. Stem cells cultured on S17 repopulated all hematopoietic lineages in marrow-ablated hosts for at least 10 months, indicating that this culture system maintained primitive stem cells with extensive proliferative capacity. Furthermore, we demonstrate that, while pluripotent stem cells express c-kit, this receptor appears to play only a minor role in stem cell maintenance in vitro. The addition of an antibody that blocks the interaction of c-kit with its ligand essentially abrogated myelopoiesis in cultures. However, the level of stem cells in antibody-treated cultures was similar to that found in untreated cultures. Thus, it seems likely that the maintenance of primitive stem cells in vitro depends on yet unidentified stromal cell-derived factor(s).


Haematologica ◽  
2020 ◽  
Vol 106 (1) ◽  
pp. 111-122 ◽  
Author(s):  
Sandrine Jeanpierre ◽  
Kawtar Arizkane ◽  
Supat Thongjuea ◽  
Elodie Grockowiak ◽  
Kevin Geistlich ◽  
...  

Chronic myelogenous leukemia arises from the transformation of hematopoietic stem cells by the BCR-ABL oncogene. Though transformed cells are predominantly BCR-ABL-dependent and sensitive to tyrosine kinase inhibitor treatment, some BMPR1B+ leukemic stem cells are treatment-insensitive and rely, among others, on the bone morphogenetic protein (BMP) pathway for their survival via a BMP4 autocrine loop. Here, we further studied the involvement of BMP signaling in favoring residual leukemic stem cell persistence in the bone marrow of patients having achieved remission under treatment. We demonstrate by single-cell RNA-Seq analysis that a sub-fraction of surviving BMPR1B+ leukemic stem cells are co-enriched in BMP signaling, quiescence and stem cell signatures, without modulation of the canonical BMP target genes, but enrichment in actors of the Jak2/Stat3 signaling pathway. Indeed, based on a new model of persisting CD34+CD38- leukemic stem cells, we show that BMPR1B+ cells display co-activated Smad1/5/8 and Stat3 pathways. Interestingly, we reveal that only the BMPR1B+ cells adhering to stromal cells display a quiescent status. Surprisingly, this quiescence is induced by treatment, while non-adherent BMPR1B+ cells treated with tyrosine kinase inhibitors continued to proliferate. The subsequent targeting of BMPR1B and Jak2 pathways decreased quiescent leukemic stem cells by promoting their cell cycle re-entry and differentiation. Moreover, while Jak2-inhibitors alone increased BMP4 production by mesenchymal cells, the addition of the newly described BMPR1B inhibitor (E6201) impaired BMP4-mediated production by stromal cells. Altogether, our data demonstrate that targeting both BMPR1B and Jak2/Stat3 efficiently impacts persisting and dormant leukemic stem cells hidden in their bone marrow microenvironment.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2433-2433
Author(s):  
Medhat Shehata ◽  
Rainer Hubmann ◽  
Martin Hilgarth ◽  
Susanne Schnabl ◽  
Dita Demirtas ◽  
...  

Abstract Abstract 2433 Chronic lymphocytic leukemia (CLL) is characterized by the clonal expansion of B lymphocytes which typically express CD19 and CD5. The disease remains incurable and recurrence often occurs after current standard therapies due to residual disease or probably due to the presence of therapy-resistant CLL precursors. Based on the growing evidence for the existence of leukemia stem cells, this study was designed to search for putative CLL precursors/stem cells based on the co-expression of CLL cell markers (CD19/CD5) with the hematopoietic stem cell marker (CD34). Forty seven CLL patients and 17 healthy persons were enrolled in the study. Twenty four patients had no previous treatment and 23 had pre-therapy. Twenty two patients were in Binet stage C and 25 patients in B. Twenty two patients had unmutated and 18 mutated IgVH gene (7: ND). Cytogenetic analysis by FISH showed that 14 patients had del 13q, 8 had del 11q, 4 had del 17p and 9 had trisomy 12. Peripheral blood and bone marrow mononuclear cells were subjected to multi-colour FACS analysis using anti-human antibodies against CD34, CD19 and CD5 surface antigens. The results revealed the presence of triple positive CD34+/CD19+/CD5+ cells in CLL samples (mean 0.13%; range 0.01–0.41) and in healthy donors (0.31%; range 0.02–0.6) within the CD19+ B cells. However, due to the high leukocyte count in CLL patients, the absolute number of these cells was significantly higher in CLL samples (mean: 78.7; range 2.5–295 cells /μL blood) compared to healthy persons (mean: 0.45: range 0.04–2.5 cells/μl)(p<0,001). These triple positive “putative CLL stem cells” (PCLLSC) co-express CD133 (67%), CD38 (87%), CD127 (52%), CD10 (49%), CD20 (61%), CD23 (96%), CD44 (98%) and CD49d (74%). FISH analysis on 4 patients with documented chromosomal abnormalities detected the corresponding chromosomal aberrations of the mature clone in the sorted CD34+/CD5+/CD19+ and/or CD34+/CD19-/CD5- cells but not in the CD3+ T cells. Multiplex RT-PCR analysis using IgVH family specific primer sets confirmed the clonality of these cells. Morphologically, PCLLSC appeared larger than lymphocytes with narrow cytoplasm and showed polarity and motility in co-culture with human bone marrow stromal cells. Using our co-culture microenvironment model (Shehata et al, Blood 2010), sorted cell fractions (A: CD34+/19+/5+, B: CD34+/19-/5- or C: CD34-/CD19+/5+) from 4 patients were co-cultured with primary autologous human stromal cells. PCLLSC could be expanded in the co-culture to more than 90% purity from fraction A and B but not from fraction C. These cells remained in close contact or migrated through the stromal cells. PCLLSC required the contact with stromal cells for survival and died within 1–3 days in suspension culture suggesting their dependence on bone marrow microenvironment or stem cell niches. RT-PCR demonstrated that these cells belong to the established CLL clone. They also eexpress Pax5, IL-7R, Notch1, Notch2 and PTEN mRNA which are known to play a key role in the early stages of B cells development and might be relevant to the early development of the malignant clone in CLL. Using NOD/SCID/IL2R-gamma-null (NOG) xenogeneic mouse system we co-transplanted CLL cells from 3 patients (5 million PBMC/mouse) together with autologous bone marrow stromal cells (Ratio: 10:1). The percentage of PCLLSC in the transplanted PBMC was 0.18% (range 0.06–0.34%). Using human-specific antibodies, human CD45+ cells were detected in peripharal blood of the mice (mean 0.9 % range 0.47–1.63%) after 2 months of transplantation. More than 90% of the human cells were positive for CD45 and CD5. Among this population, 26% (range 15–35%) of the cells co-expressed CD45, CD19, CD5 and CD34 and thus correspond to the PCLLSC. In conclusion, our data suggest the existence of putative CLL precursors/stem cells which reside within the CD34+ hematopoietic stem cell compartment and carry the chromosomal aberrations of the established CLL clone. These cells could be expanded in vitro in a bone marrow stroma-dependent manner and could be engrafted and significantly enriched in vivo in NOG xenotransplant system. Further characterization and selective targeting and eradication of these cells may pave the way for designing curative therapeutic strategies for CLL. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1999 ◽  
Vol 93 (9) ◽  
pp. 2884-2897 ◽  
Author(s):  
Zofia Drzeniek ◽  
Georg Stöcker ◽  
Barbara Siebertz ◽  
Ursula Just ◽  
Timm Schroeder ◽  
...  

Heparan sulfate (HS) proteoglycans of bone marrow (BM) stromal cells and their extracellular matrix are important components of the microenvironment of hematopoietic tissues and are involved in the interaction of hematopoietic stem and stromal cells. Although previous studies have emphasized the role of HS proteoglycan synthesis by BM stromal cells, we have recently shown that the human hematopoietic progenitor cell line TF-1 also expressed an HS proteoglycan. Immunochemical, reverse transcriptase-polymerase chain reaction (RT-PCR), and Northern blot analysis of this HS proteoglycan showed that it was not related to the syndecan family of HS proteoglycans or to glypican. To answer the question of whether the expression of HS proteoglycans is associated with the differentiation state of hematopoietic progenitor cells, we have analyzed the proteoglycan synthesis of several murine and human hematopoietic progenitor cell lines. Proteoglycans were isolated from metabolically labeled cells and purified by several chromatographic steps. Isolation and characterization of proteoglycans from the cell lines HEL and ELM-D, which like TF-1 cells have an immature erythroid phenotype, showed that these cells synthesize the same HS proteoglycan, previously detected in TF-1 cells, as a major proteoglycan. In contrast, cell lines of the myeloid lineage, like the myeloblastic/promyelocytic cell lines B1 and B2, do not express HS proteoglycans. Taken together, our data strongly suggest that expression of this HS proteoglycan in hematopoietic progenitor cell lines is associated with the erythroid lineage. To prove this association we have analyzed the proteoglycan expression in the nonleukemic multipotent stem cell line FDCP-Mix-A4 after induction of erythroid or granulocytic differentiation. Our data show that HS proteoglycan expression is induced during early erythroid differentiation of multipotent hematopoietic stem cells. In contrast, during granulocytic differentiation, no expression of HS proteoglycans was observed.


Blood ◽  
1994 ◽  
Vol 83 (2) ◽  
pp. 361-369 ◽  
Author(s):  
PE Funk ◽  
PW Kincade ◽  
PL Witte

In suspensions of murine bone marrow, many stromal cells are tightly entwined with hematopoietic cells. These cellular aggregations appear to exist normally within the marrow. Previous studies showed that lymphocytes and stem cells adhered to stromal cells via vascular cell adhesion molecule 1 (VCAM1). Injection of anti-VCAM1 antibody into mice disrupts the aggregates, showing the importance of VCAM1 in the adhesion between stromal cells and hematopoietic cells in vivo. Early hematopoietic stem cells were shown to be enriched in aggregates by using a limiting-dilution culture assay. Myeloid progenitors responsive to WEHI-3CM in combination with stem cell factor (c-kit ligand) and B220- B-cell progenitors responsive to insulin-like growth factor-1 in combination with interleukin-7 are not enriched. We propose a scheme of stromal cell-hematopoietic cell interactions based on the cell types selectively retained within the aggregates. The existence of these aggregates as native elements of bone marrow organization presents a novel means to study in vivo stem cell-stromal cell interaction.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 770-770
Author(s):  
Owen J. Tamplin ◽  
Ellen M. Durand ◽  
Logan A. Carr ◽  
Sarah J. Childs ◽  
Elliott H. Hagedorn ◽  
...  

Abstract Hematopoietic stem cells (HSC) reside in a highly structured microenvironment called the niche. There is two-way communication between a stem cell and its niche that determines important cell fate decisions. HSC must remain quiescent to persist throughout life but also divide and contribute progenitors that will replenish the blood supply. Although there have been a number of elegant studies that have imaged the mammalian bone marrow, we still lack a high-resolution real-time view of endogenous HSC behaviors and interactions within the niche. To overcome these challenges, we developed a transgenic zebrafish line that expresses GFP or mCherry in HSC. We generated this line using the previously described mouse Runx1 +23 kb intronic enhancer. We confirmed the purity of these stem cells by adult-to-adult limiting dilution transplantation with as few as one cell. Based on long-term multi-lineage engraftment, we estimated a stem cell purity of approximately 1/35, which is similar to the KSL (Kit+Sca1+Lin-) population in mouse. Using a novel embryo-to-embryo transplantation assay that is unique to zebrafish, we estimated an even higher stem cell purity of 1/2. These experiments have defined the most pure HSC population in the zebrafish. Using this novel transgenic reporter we have tracked HSC as they migrate in the live zebrafish embryo. This allowed us to image HSC as they interact with other cell types in their microenvironment, including endothelial cells and mesenchymal stromal cells. We have shown that a small group of endothelial cells remodel around a single HSC soon after it lodges in the niche. Recently, we have also found that a single stromal cell can anchor an HSC as it divides. In most cases, we observed that an HSC divides perpendicular to the stromal cell, with one daughter cell remaining attached to the stromal cell and the other migrating away. To gain a much higher resolution view of these cellular events than is possible with confocal microscopy we looked for an alternative approach. A combined method is called “Correlative Light and Electron Microscopy” (CLEM), and involves identification of cells by confocal microscopy, followed by processing of the same sample for EM scanning. We have applied this method by: 1) tracking endogenous HSC in the live embryo; 2) fixing the same embryo for serial block-face scanning EM; 3) reconstructing 3D models from high resolution serial EM sections. We used easily visible blood vessels as anatomical markers that allowed us to pinpoint a single cell in a relatively large block of scanned tissue. As expected, the identified HSC was round, had a distinctive large nucleus, scant cytoplasm, and ruffled membrane. The HSC was surrounded by a small group of 5-6 endothelial cells, as predicted from our confocal live imaging. However at this very high resolution (10 nm/pixel), we could see that only part of the HSC surface was contacted and wrapped by an endothelial cell. Other regions of the HSC surface were contacted by small endothelial cell protrusions. Much of the HSC surface was surrounded by a narrow extracellular space with endothelial and stromal cells lying opposite. Strikingly, we were able to identify the firm anchored attachment between a single stromal cell and HSC that we showed previously oriented the plane of division. By combining confocal live imaging of a novel zebrafish HSC reporter, and serial block-face scanning EM, we have created the first high-resolution 3D model of an endogenous stem cell in its niche. Disclosures Tamplin: Boston Children's Hospital: Patents & Royalties. Zon:FATE Therapeutics, Inc: Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Other; Scholar Rock: Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Other; Stemgent: Equity Ownership, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2000 ◽  
Vol 95 (6) ◽  
pp. 1957-1966 ◽  
Author(s):  
Chu-Chih Shih ◽  
Mickey C.-T. Hu ◽  
Jun Hu ◽  
Yehua Weng ◽  
Paul J. Yazaki ◽  
...  

Abstract The development of culture systems that facilitate ex vivo maintenance and expansion of transplantable hematopoietic stem cells (HSCs) is vital to stem cell research. Establishment of such culture systems will have significant impact on ex vivo manipulation and expansion of transplantable stem cells in clinical applications such as gene therapy, tumor cell purging, and stem cell transplantation. We have recently developed a stromal-based culture system that facilitates ex vivo expansion of transplantable human HSCs. In this stromal-based culture system, 2 major contributors to the ex vivo stem cell expansion are the addition of leukemia inhibitory factor (LIF) and the AC6.21 stromal cells. Because the action of LIF is indirect and mediated by stromal cells, we hypothesized that LIF binds to the LIF receptor on AC6.21 stromal cells, leading to up-regulated production of stem cell expansion promoting factor (SCEPF) and/or down-regulated production of stem cell expansion inhibitory factor (SCEIF). Here we demonstrate a secreted SCEPF activity in the conditioned media of LIF-treated AC6.21 stromal cell cultures (SCM-LIF). The magnitude of ex vivo stem cell expansion depends on the concentration of the secreted SCEPF activity in the SCM-LIF. Furthermore, we have ruled out the contribution of 6 known early-acting cytokines, including interleukin-3, interleukin-6, granulocyte macrophage colony-stimulating factor, stem cell factor, flt3 ligand, and thrombopoietin, to this SCEPF activity. Although further studies are required to characterize this secreted SCEPF activity and to determine whether this secreted SCEPF activity is mediated by a single factor or by multiple growth factors, our results demonstrate that stromal cells are not required for this secreted SCEPF activity to facilitate ex vivo stem cell expansion.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Farid El-Sayed ◽  
Jonathan Nguyen ◽  
Mark Sussman

Heart failure is a leading cause of death in the US due to the limited capability of adult mammalian heart to regenerate following injury. Autologous stem cell therapy holds promise for regeneration of injured myocardium after myocardial infarction. However, stem cells derived from diseased organs exhibit impaired proliferation and migration and increased susceptibility to cell death. Empowering stem cells from diverse origins, including cardiac progenitor cells (CPCs), with pro-survival genes has been attempted. Despite the well-established roles of purinergic signaling mediated by extracellular nucleotides in regulating diverse cellular responses in cardiovascular diseases, it has not been well-defined in CPCs. Our preliminary data show, for the first time, that the majority of P2 purinergic receptors are expressed in human CPCs (hCPCs) isolated from patients undergoing left ventricular assist device (LVAD) implantation surgery. The G protein-coupled UDP-sugar-sensing P2Y14 receptor (P2Y14R) has been shown to stimulate keratinocyte proliferation and migration, neutrophil and hematopoietic stem cell (HSC) chemotaxis in addition to increasing HSC resistance to stress-induced senescence. We aim to determine whether P2Y14R plays similar regenerative roles in cardiac tissue where the P2Y14R-mediated physiological responses haven’t been previously addressed. Our preliminary data show that the P2Y14R selective agonist UDP-Glucose enhances hCPC proliferation, migration and survival. Interestingly, hCPCs that exhibit relatively slower growth kinetics and enhanced senescence show a dramatic decrease in P2Y14R expression compared to fast-growing hCPCs consistent with our hypothesis that overexpressing P2Y14R participates in rejuvenating hCPCs and improving their growth capabilities. This hypothesis will be tested in vivo by determining whether P2Y14R overexpression in hCPCs improves their reparative potential for injured mouse myocardium. Mechanistically, we show for the first time that UDP-Glu induces downstream activation of YAP linking the extracellular nucleotides released during cardiac ischemia to extracellular matrix sensing and Hippo signaling that have been recently implicated in cardiac regeneration.


Sign in / Sign up

Export Citation Format

Share Document