scholarly journals Development of First-in-Class Histone Acetyltransferase (HAT) Activators for Precision Targeting of Epigenetic Derangements in Lymphoma

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 37-37 ◽  
Author(s):  
Yuxuan Liu ◽  
Jole Fiorito ◽  
Yulissa Gonzalez ◽  
Elisa Zuccarello ◽  
Elisa Calcagno ◽  
...  

Abstract Monoalleleic inactivating mutations in histone acetyltransferase (HAT) enzymes promote lymphomagenesis in germinal center derived B-cell lymphomas, follicular lymphoma (FL) and diffuse large B cell lymphoma (DLBCL), occurring in about 40% of patients. The intact wild-type allele offers an opportunity to leverage the normal enzyme to overcome the pathogenic impact of the mutated allele. We hypothesize that if inactivating mutations in HATs are critical to FL and DLBCL lymphomagenesis, then drugs capable of inducing enhanced function of the wild-type HAT allele product should be cytotoxic in cells harboring HAT mutations. We designed and synthesized a library of new chemical entities with HAT activating properties (N=70). The cytotoxic effects of the compounds (N=29) were evaluated via medium-throughput screening in 4 DLBCL cell lines. IC50 ranged from 3.6 to 43.2 µM. Focusing on 6 analogue compounds, which share the same Nphenylbenzamide scaffold, we evaluated cytotoxicity across an expanded panel of 11 DLBCL cell lines. The median IC50 of 6 analogues tested was lower in the EP300 mutated cell lines (median 9.6 µM, range 5 - 11 µM) compared to the wildtype lines (median, 17 µM, range 15 - 24 µM). YF2 was chosen as the lead compound because it was the most selective of the analogues in inducing cytotoxicity in cell lines harboring EP300 mutations compared to wildtype (IC50 5 µM and 19 µM respectively, p<0.0005). To determine YF2's functional effect on activating p300 in a cell free assay, p300-mediated histone and p53 acetylation was measured by combining recombinant p300, substrate and acetyl-CoA. YF2 increased p300-mediated histone H3 lysine27 acetylation (EC50=38.64 nM) and H3 lysine18 acetylation (EC50=1.656 nM). YF2 also induced acetylation of p53 by 5-fold in a dose dependent manner. In cellular assays, YF2 induces acetylation of histone (H3K27 2-fold and H3K14 1.6-fold) after exposure in the SUDHL-6 cell line (EP300 mutated) as measured by mass spectrometry and confirmed by immunoblot of histone extracts. To assess the pharmacokinetics (PK) and preliminary in vivo efficacy of YF2, SUDHL-6 (EP300-mutated) xenograft bearing mice were treated once daily i.p. for 6 days with YF2 doses of 40mg/kg or 60mg/kg. Serum and tumor samples were collected at sequential time points. The Cmax of YF2 60mg/kg was 2424 ng/mL (5.1 µM) whereas Cmax of 40mg/kg was 2091.96 ng/mL (4.5 µM) which is consistent with the cellular IC50. Both concentrations of YF2, 40mg/kg and 60mg/kg, accumulated in tumor with Cmax 9536.71 and 9858.15 ng/g, respectively. YF2 is rapidly absorbed in the serum (Tmax 0.25 h) and sustained in the tumor (Tmax 4h). Significant effects on tumor size were observed in 13 of 19 mice demonstrating decreased tumor volume following only 6 days of YF2 treatment. Mice treated with YF2 40mg/kg induced H3K27 acetylation in tumor specimens as determined by mass spectrometry.YF2 40mg/kg was well tolerated in SCID/beige mice for 30 days without significant weight loss, while 60mg/kg YF2 led to 20% weight loss during 6-days of treatment. Additionally, YF2 demonstrated cytotoxic effects in 2 primary patient lymphoma samples but were non-cytotoxic to peripheral blood mononuclear cells from healthy donors. Furthermore, we hypothesized that if DLBCL is sensitive to an enhanced acetylation state, then combined targeting of epigenetic machinery with HAT activators and HDAC inhibitors may induce profound epigenetic modification leading to synergistic induction of programmed cell death. The concentration : effect relationship of YF2 and the pan-HDAC inhibitor, romidepsin, was evaluated over time across a panel of lymphoma cell lines (N=7). Synergy was calculated by Excess over Bliss (EOB>10 connotes synergy). Combination of YF2 and romidepsin demonstrated strong synergism in DLBCL lines (EOB = 48). The combination led to enhanced histone acetylation compared to either single agents. The combination is safe in mice and murine xenograft studies of the combination are underway. In summary, YF2 induces HAT-mediated acetylation of histone and p53. It demonstrates selective cytotoxic effects in EP300-mutated DLBCL cell lines, and is both well tolerated and effective in xenograft mouse models of lymphoma suggesting potential clinical application and precision medicine opportunities for patients harboring this mutation. Disclosures O'Connor: Seattle Genetics: Research Funding; ADC Therapeutics: Research Funding; Celgene: Research Funding.

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 245-245
Author(s):  
Stephen M Ansell ◽  
Lucy S. Hodge ◽  
Frank Secreto ◽  
Michelle Manske ◽  
Esteban Braggio ◽  
...  

Abstract Massively parallel sequencing analyses have revealed a common mutation within the MYD88 gene (MYD88L265P) occurring at high frequencies in many non-Hodgkin lymphomas (NHL) including the rare lymphoplasmacytic lymphoma, Waldenström’s macroglobulinemia (WM). Using whole exome sequencing, Sanger sequencing and allele-specific PCR, we validate the initial studies and detect the MYD88L265P mutation in the tumor genome of 97% of WM patients analyzed (n=39). MYD88L265P was detected at lower frequencies in other indolent lymphomas including LPL (0%), MALT (4%), nodal MZL (5%) and splenic MZL (8%); all but one MYD88L265P was heterozygous. Due to the high frequency of MYD88 mutation in WM and other NHL, and its known effects on malignant B cell survival, therapeutic targeting of MYD88 signaling pathways may be useful clinically. However, while the effects of MYD88L265P on the activity of IRAK1/4 and NF-κB are have been studied previously, we are lacking a thorough characterization of the role of intermediary signaling proteins such as TRAF6 and TAK1 on the biology of MYD88L265P-expressing B cells. A better understanding of the proteins involved in MYD88L265P signaling may lead to the development of more targeted and effective therapeutic approaches. In an attempt to identify MYD88L265P –specific therapeutic targets we first wanted to characterize the role of intermediary signaling proteins that facilitate the downstream activation of NF-κB. Upon activation of TLRs or IL-1b receptors, MYD88 forms a homodimer and recruits IRAK1/4 and TRAF6 into a complex resulting in association and phosphorylation of TAK1 followed by activation of NF-κB. We monitored the formation of a complex comprised of MYD88, IRAK1, IRAK4 and TRAF6 and immunoprecipitation of either endogenous IRAK4 or IRAK1 revealed constitutive association of IRAK with TRAF6 and MYD88L265P. To assess if the formation of a MYD88L265P/IRAK/TRAF6 complex results in downstream activation of TAK1, constitutive TAK1 phosphorylation was measured and detected in all three cell lines that express MYD88L265P. An association between TAK1 and TRAF6, another measure of TAK1 activation, was also detectable. When a similar analysis of TAK1 was performed in DLBCL cells expressing wild-type MYD88, no phosphorylation of TAK1 was detected, nor was TAK1 associated with TRAF6. IRAK1, IRAK4, TAK1, TRAF6, and MYD88 were expressed at similar levels in all cell lines studied and therefore did not contribute the differences in MYD88 complex formation observed between cell lines. These studies were further confirmed using HEK 293T cells that were transduced with either a vector control plasmid or HA-tagged MYD88WT or MYD88L265P expression plasmids. Together, these studies suggest that MYD88L265P forms a complex with IRAK and TRAF6 resulting in constitutive activation of TAK1 and NF-κB. To confirm the significance of TAK1-mediated MYD88L265P signaling on lymphoma cell growth, the effect of the selective TAK1 inhibitor, (5Z)-7-Oxozeaenol, on cell proliferation was tested. All MYD88L265P-expressing cell lines were sensitive to TAK1 inhibition in a dose-dependent manner (0-10 μM). In contrast, NHL cells expressing MYD88WT were found to be insensitive to TAK1 inhibition. We next tested the impact of the TAK1 inhibitor on a MYD88L265P positive WM patient sample. Similar to what was seen in the WM cell lines, the TAK1 inhibitor inhibited WM cell growth and survival in a dose dependent manner. Additionally, the TAK1 inhibitor significantly reduced the level of IL-10 secreted by each of the cell lines. Together, these data suggest that MYD88L265P drives cell proliferation and cytokine secretion through a TAK1-dependent mechanism. In conclusion, we are the first to validate by NGS in a large patient cohort the high prevalence and specificity of MYD88L265P in WM. Cells harboring the L265P mutation but not wild-type MYD88 exhibit constitutive signaling leading to the hyperactivation of NF-κB. We have established the role of TAK1 as an integral component of MYD88L265P signaling in both WM and DLBCL cell. Our data suggest that targeting TAK1 clinically may be an effective strategy for the treatment of WM and other lymphomas driven by MYD88L265P signaling. Disclosures: Fonseca: millennium: Consultancy; amgen: Consultancy; Binding site: Consultancy; onyx: Consultancy; medtronic: Consultancy; Genzyme: Consultancy; Otsuka: Consultancy; Celgene: Consultancy; lilly: Consultancy; Onyx: Research Funding; cylene: Research Funding.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Danxia Zhu ◽  
Cheng Fang ◽  
Wenting He ◽  
Chen Wu ◽  
Xiaodong Li ◽  
...  

We investigated the role of miR-181a in diffuse large B-cell lymphoma (DLBCL) and its potential target genes. miR-181a levels were lower in activated B-cell- (ABC-) like DLBCL cells than that in germinal center B-cell- (GCB-) like DLBCL cells. Overexpression of miR-181a in ABC-like DLBCL cell lines (OCI-LY10 and U2932) resulted in G0/G1 cell cycle arrest, increased apoptosis, and decreased invasiveness. miRNA target prediction programs (miRanda, TargetScan, and miRDB) identified caspase recruitment domain-containing protein 11 (CARD11) as a putative miR-181a target. CARD11 mRNA and protein levels were higher in the ABC-like DLBCL than that in GCB-like DLBCL. Moreover, CARD11 mRNA and protein levels were downregulated in the OCI-LY10 and U2932 cell lines overexpressing miR-181a. Dual luciferase reporter assays confirmed the miR-181a binding site in the CARD11 3′UTR region. OCI-LY10 and U2932 cells transfected with a CARD11 expression vector encoding miR-181a with a mutated binding site showed higher CARD11 protein levels, cell viability, G2/M phase cells, and invasiveness compared to those transfected with a wild-type CARD11 expression vector. Nude mice xenografted with OCI-LY10 cells with overexpressed wild-type miR-181a generated smaller tumors compared to those with overexpressed mutated binding site of CARD11 3′UTR and miR-181a. These results indicate that miR-181a inhibits ABC-like DLBCL by repressing CARD11.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3581-3581
Author(s):  
Lourdes M. Mendez ◽  
Jose Polo ◽  
Melissa Krupski ◽  
Jessica Yu ◽  
Ari M. Melnick ◽  
...  

Abstract BCL6 is POZ/BTB transcription repressor that is required for the germinal center (GC)- stage of B cell development and its deregulated expression underlies the development of many GC-derived B cell lymphomas such as diffuse large B cell lymphoma (DLBCL). BCL6 carries out its biological function by repressing target genes involved in various aspects of B cell biology such as DNA damage response, cell-cycle regulation and plasma cell differentiation. Recent publications indicate that BCL6 differentially utilizes its corepressor partners to silence target genes involved in different biological processes. Negative autoregulation of BCL6 is likely to play an important role in B-cell differentiation, and is frequently disrupted in DLBCL due to translocation or point mutation of the BCL6 promoter. However, from a mechanistic standpoint, it is not known how BCL6 mediates negative autoregulation. BCL6 is reported to repress its target genes through binding of the SMRT, NCoR and BCoR corepressors to its N-terminal POZ domain and through binding of the MTA3 and HDAC2 corepressors to its second repression domain. However, a BCL6 mutant unable to bind these corepressors retained near wild-type repression activity on the BCL6 promoter. The expression of endogenous BCL6 was unchanged in DLBCL cell lines treated with BCL6 Peptide Inhibitor, which selectively disrupts the association between BCL6 and its POZ domain corepressors, or with MTA3 siRNA. This led us to consider the possibility that BCL6 autoregulation proceeds through a novel corepressor. Several POZ transcription factors can interact with CtBP as their corepressor. We found BCL6 and CtBP can interact in both the ectopically expressed and endogenous settings in DLBCL cells. Moreover, our ChIP experiments demonstrate that CtBP is present in the 5′UTR of BCL6 at sites that were previously shown by us and others to mediate BCL6 negative autoregulation. Nearly half of DLBCL patients are estimated to carry translocations and “activating” point mutations in the 5′UTR of BCL6 which allow negative autoregulation to be bypassed. In DLBCL cell lines carrying BCL6 promoter mutations or translocations, CtBP was preferentially bound to the wild-type BCL6 allele. Moreover, CtBP siRNA specifically derepressed the wild-type allele sparing the translocated BCL6 allele driven by heterologous promoters. This allelic analysis of BCL6 is consistent with a model in which BCL6 recruits CtBP to carry out negative autoregulation. Tiling ChIP-on-chip of BCL6 target genes showed colocalization of CtBP in a BCL6 repression complex at only a subset of target genes, including BCL6. However, the BCL6 locus was the only target dependent exclusively on CtBP for repression. In an effort to address the corepressor requirements of BCL6 autoregulation, we have uncovered a novel BCL6 corepressor, CtBP. Our results substantiate the growing body of evidence that BCL6’s mechanism of repression is dynamic, selectively calling upon corepressors to silence different cohorts of target genes perhaps reflecting segregation of biological functions. Our study provides new insight into normal BCL6-driven biology and also informs BCL6-targeted lymphoma therapies.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 573-573
Author(s):  
Jessica Schmidt ◽  
Esteban Braggio ◽  
Marta Chesi ◽  
Jan Egan ◽  
Yuan Xiao Zhu ◽  
...  

Abstract Abstract 573 Using high throughput RNA interference screening on 6,722 druggable genes we previously identified XPO1/CRM1 as one of the 50 most vulnerable targets in Multiple Myeloma (MM)1. XPO1 knockdown proved lethal in MM cell lines, but had no effect on human embryonic kidney (293) cells or lung cancer (A549) cells, showing that XPO1 is a specific myeloma vulnerability, and that myeloma cell survival is dependent upon XPO1 expression. XPO1 encodes the protein exportin 1, a nuclear transport protein that exports tumor suppressor proteins from the nucleus, where they are active, to the cytoplasm, where they become inactive. We next analyzed XPO1 in MM via gene expression profiling (GEP). XPO1 expression is up-regulated as the disease progresses: patients with active MM have a higher level of XPO1 compared to normal plasma cells (p<0.04) and to patients with monoclonal gammopathy of undetermined significance or smoldering MM (p<0.0001). The highest levels were in human MM cell lines. TC classification revealed highest levels in t(11;14) and lowest levels in t(4;14) disease. Selective inhibitors of nuclear export (SINE) compounds have recently been developed that irreversibly inhibit XPO1/CRM1 and its nuclear export function. One such inhibitor, KPT-276, decreased the viability of all 12 MM cell lines tested in vitro, as shown by MTT assay. After 72 hours of drug treatment, a median IC50 value of approximately 175 nM (range 30–1000 nM) was observed. No synergy with other commonly used anti-MM therapeutics was observed in vitro. In contrast, the drug had little effect in 8 solid tumor cell lines with the exception of the B cell lymphoma line Ramos. KPT-276 was also consistently active in inducing apoptosis against MM primary patient samples. Using an IC80 dose of KPT-276, drug-treated samples had a reduced population of cells in S phase (8%) compared to cells treated with DMSO (21%). Using the vkappa*myc transgenic MM model, KPT-276 reduced monoclonal spikes (by a mean of 56%) in all mice treated orally with 150 mg/kg dose three times per week for 4 weeks. Furthermore, KPT-276 significantly reduced tumor growth in a xenograft MM1.S mouse model. GEP was performed in the presence or absence of drug in two different MM cell lines. Two genes of probable relevance, cell division cycle 25 homolog A (CDC25A) and Bromodomain-containing protein 4 (BRD4), were dysregulated by SINE treatment. Both are involved in cell cycle control and have been linked to MYC. RT-PCR and western blotting confirm that MYC, CDC25A and BRD4 are down-regulated, as soon as six hours, after treatment with KPT-276. KPT-276 has shown marked anticancer activities against B cell malignancies in vitro and is active and tolerated in Phase I canine studies. KPT-330, a close analog of KPT-276, is currently in Phase 1 studies in human with advanced hematological and solid tumors. Disclosures: Schmidt: Karyopharm: Research Funding. McCauley:Karyopharm Therapeutics Inc: Employment. Shacham:Karyopharm Therapeutics: Employment. Kauffman:Karyopharm Therapeutics Inc: Employment. Stewart:Millenium: Consultancy, Honoraria, Research Funding; Onyx: Consultancy; Celgene: Consultancy.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 129-129 ◽  
Author(s):  
Fabrice Jardin ◽  
Anais Pujals ◽  
Laura Pelletier ◽  
Elodie Bohers ◽  
Vincent Camus ◽  
...  

Abstract Background and aim of the study Primary mediastinal B-cell lymphoma (PMBL) is an entity of aggressive B-cell lymphoma that is clinically and biologically distinct from the other molecular subtypes of diffuse large B-cell lymphoma (DLBCL). We recently detected by Whole exome sequencing a recurrent point mutation in the XPO1 (exportin 1) gene (also referred to as chromosome region maintenance 1; CRM1), which resulted in the Glu571Lys (p.E571K) missense substitution in 2 refractory/relapsed PMBL (Dubois et al., ICML 2015; Mareschal et al. AACR 2015). XPO1 is a member of the Karyopherin-b superfamily of nuclear transport proteins. XPO1 mediates the nuclear export of numerous RNAs and cellular regulatory proteins, including tumor suppressor proteins. This mutation is in the hydrophobic groove of XPO1 that binds to the leucine-rich nuclear export signal (NES) of cargo proteins. In this study, we investigated the prevalence, specificity, and biological / clinical relevance of XPO1 mutations in PMBL. Patients and methods High-throughput targeted or Sanger sequencing of 117 PMBL patients and 3 PMBL cell lines were performed. PMBL cases were defined either molecularly by gene expression profile (mPMBL cohort) or by standard histological method (hPMBL cohort) and enrolled in various LYSA (LYmphoma Study Association) clinical trials. To assess the frequency and specificity of XPO1 mutations, cases of classical Hodgkin lymphoma (cHL) and primary mediastinal grey zone lymphoma (MGZL) were analysed. Cell experiments were performed to assess the impact of the E571 mutation on the activity of selective inhibitor of nuclear export (SINE) molecules. Results XPO1 mutations were present in 28/117 (24%) PMBL cases but were rare in cHL cases (1/19, 5%) and absent from MGZL cases (0/20). A higher prevalence (50%) of the recurrent codon 571 variant (p.E571K) was observed in PMBL cases defined by gene expression profiling (n = 32), as compared to hPMBL cases (n = 85, 13%). No difference in age, International Prognostic Index (IPI) or bulky mass was observed between the PMBL patients harboring mutant and wild-type XPO1 in the overall cohort whereas a female predominance was noticed in the mPMBL cohort. Based on a median follow-up duration of 42 months, XPO1 mutant patients exhibited significantly decreased PFS (3y PFS = 74% [CI95% 55-100]) compared to wild-type patients (3y PFS = 94% [CI95% 83-100], p=0.049) in the mPMBL cohort. In 4/4 tested cases, the E571K variant was also detected in cell-free circulating plasmatic DNA, suggesting that the mutation can be used as a biomarker at the time of diagnosis and during follow-up. Importantly, the E571K variant was detected as a heterozygous mutation in MedB-1, a PMBL-derived cell line, whereas the two other PMBL cell lines tested, Karpas1106 and U-2940, did not display any variants in XPO1 exon 15. KPT-185, the SINE compound that blocks XPO1-dependent nuclear export, induced a dose-dependent decrease in cell proliferation and increased cell death in the PMBL cell lines harbouring wild type or mutated alleles. To test directly if XPO1 mutation from E571 to E571K alters XPO1 inhibition by SINE compounds, the mutated protein was tested in vitro. The E571XPO1 mutated allele was transiently transfected into osteosarcoma U2OS cells which stably express the fluorescently labelled XPO1 cargo REV. Cells were treated with the clinical SINE compound selinexor, which is currently in phase I/II clinical trials and nuclear localization of REV-GFP was analysed in red transfected cells. The results showed that the nuclear export of the mutated XPO1 protein was inhibited by selinexor similarly to the wild-type XPO1 protein (Figure 1). Conclusion Although the oncogenic properties of XPO1 mutations remain to be determined, their recurrent selection in PMBL strongly supports their involvement in the pathogenesis of this curable aggressive B-cell lymphoma. XPO1 mutations were primarily observed in young female patients who displayed a typical PMBL molecular signature. The E571K XPO1 mutation represents a novel hallmark of PMBL but does not seem to interfere with SINE activity. Rev-GFP (green fluorescent) expressing U2OS cells were transfected with wild type XPO1-RFP (red fluorescent protein), XPO1-C528S-RFP, XPO1-E571K-mCherry, and XPO1-E571G-mCherry. The cells were then treated with 1µM KPT-330 for 8 hours. Figure 1. Rev-GFP expressing U2OS cells transfected with XPO1 variants. Figure 1. Rev-GFP expressing U2OS cells transfected with XPO1 variants. Disclosures Landesman: Karyopharm Therapeutics: Employment. Senapedis:Karyopharm Therapeutics, Inc.: Employment, Patents & Royalties. Argueta:Karyopharm Therapeutics: Employment. Milpied:Celgene: Honoraria, Research Funding.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3908-3908
Author(s):  
Kentaro Minagawa ◽  
Kanako Wakahashi ◽  
Fukui Chie ◽  
Shinichiro Nishikawa ◽  
Noboru Asada ◽  
...  

Abstract Diffuse large B-cell lymphomas (DLBCL) are heterogeneous diseases caused by several genetic aberrations. The novel post-transcriptional regulator gene called transformed follicular lymphoma (TFL) was first identified from t(2;6)(p12;q23), which appeared during the transformation of FL to DLBCL (Minagawa et al. Br J Haematol 2007). Normal human lymphocytes generally express TFL, but it is defective in some leukemia/lymphoma cell lines. TFL overexpression in such cell lines inhibited cell growth, suggesting that TFL functions as a tumor suppressor (Minagawa et al. Mol Cancer Res 2009). TFL locates in mRNA processing body in the cytoplasm and has the unique CCCH-type zinc finger motif functioning as RNase. TFL regulates several cytokines, including IL-2, IL-6, IL-10, TNF-α, and IL-17a, via mRNA degradation. In an experimental autoimmune encephalitis model, TFL null mice (TFL-/-) demonstrated persistent paralysis, resulting from more infiltration of Th17 cells into CNS with markedly increased IL-17a mRNA levels. Therefore, a TFL-driven feedback mechanism for excessive inflammation is indispensable to suppress T-cell-mediated autoimmune diseases (Minagawa et al. J Immunol 2014). TFL deletion examined by FISH using a 110kbp DNA probe containing an entireTFL locus was found in 12.8% of mature B-cell lymphomas (n=86, FL=30, DLBCL=40). However, the pathological significance of TFL deletion has not yet been clarified. To investigate how TFL loss affects lymphoma biology, we developed VavP-bcl2 transgenic (Bcl2-Tg)/TFL-/-mice. Although the survival of TFL-/- was comparable to the wild-type, Bcl2-Tg/TFL-/- died about 19 weeks earlier than Bcl2-Tg (Fig. 1). Both strains developed lymphadenopathy and splenomegaly similarly. No different microscopic finding was noted in lymph nodes, spleen, or bone marrow (BM). No additional malignancy was found in Bcl2-Tg/TFL-/- on autopsy. However, significant body weight loss appeared by 30 weeks in Bcl2-Tg/TFL-/- but not in Bcl2-Tg (Fig. 3). To identify what causes earlier death in Bcl2-Tg/TFL-/-, we carefully examined the phenotypic change of BM lymphocytes. We found a unique B220-IgM+ population in Bcl2-Tg BM, which was not found in wild-type. We speculated that TFL deficiency in this population might drive the deterioration in Bcl2-Tg/TFL-/-. To identify which mRNA was dysregulated by TFL deficiency, we comprehensively analyzed mRNA expression profiles in B220-IgM+ cells in both strains using cDNA microarray chip. Among several genes upregulated at least threefold in Bcl2-Tg/TFL-/- than Bcl2-Tg, we paid attention to CXCL13, the mRNA expression of which in Bcl2-Tg/TFL-/- was 4.19-fold higher than that in Bcl2-Tg (p=0.03). In fact, CXCL13 concentration in BM extracellular fluid as well as plasma in Bcl2-Tg/TFL-/- showed incredible increase in a logarithmic scale (Fig. 2). As a noteworthy event, body weight loss in Bcl2-Tg/TFL-/- followed the increase of CXCL13 in plasma by 30 weeks (Fig. 3). To confirm that TFL post-transcriptionally regulates CXCL13 mRNA through the degradation of its 3′UTR, we performed a reporter assay with a plasmid vector containing 3′UTR of CXCL13 mRNA. Co-transfection with a TFL expression vector showed decreased luciferase activity compared to the control. This suggests that TFL directly regulates CXCL13 mRNA via its 3′UTR degradation. This regulation occurs more prominently in B-cell lineage rather than myeloid or T-cell lineage, whereas IL-2 mRNA regulation occurs promiscuously. CXCL13 secretion was significantly increased in the culture supernatant of BM cells but not spleen cells derived from Bcl2-Tg/TFL-/-. We further sorted several cell populations, including B220-IgM+ in BM, and cultured them for 96 h. CXCL13 secretion from B220-IgM+ population was increased significantly compared to other populations. Thus, we concluded that B220-IgM+ cells in BM are the main producer of CXCL13 in Bcl2-Tg/TFL-/-. Loss of TFL-driven attenuation for excessive inflammation in lymphoma-bearing mice could contribute to the short survival. It is of interest whether high plasma CXCL13 directly affects cachexia and early death in Bcl2-Tg/TFL-/-. TFL deletion in human lymphoma might contribute not only to malignant transformation but also to a major B symptom, i.e., weight loss. Our findings may open a new window for the predictive factor on the prognosis of B-cell lymphoma and/or new therapeutic intervention by targeting CXCL13. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4435-4435
Author(s):  
Matko Kalac ◽  
Michael Mangone ◽  
Alison Rinderspacher ◽  
Shi-Xian Deng ◽  
Luigi Scotto ◽  
...  

Abstract The first two authors contributed equally to this work Identifying pharmacologic strategies to inhibit the activation of NF-κB and its target genes has been a major research pursuit. To date, no direct inhibitors of the NF-κB subunits have been explored in the clinic. Based on the constitutive activation of NF-κB in diffuse large B-cell lymphoma (DLBCL), we used this disease model to develop drugs targeting NF-κB. Using a fluorescence-based high throughput screening (HTC) approach, a unique N-quinoline-benzenesulfonamide (NQBS) scaffold was identified as potential small molecule inhibitor of the NF-κB pathway. A confocal microscopy based HTC assay performed in human umbilical vein endothelial cells (HUVEC) identified hit compounds that contained a unique NQBS core structure. The assay screened for compounds that inhibited nuclear translocation of NF-κB subunits in TNFα-induced HUVEC cells. To date over 100 NQBS analogs have been synthesized with varying potency and cytotoxicity in inhibiting growth of DLBCL lines (OCI-Ly10, RIVA, HBL-1 and OCI-Ly3). Cytotoxicity assays demonstrated that the most potent compounds exhibit IC50s in the 0.5 to 1.5 µM range. These most potent NQBS analogs identified as CU-O42 CU-O47 and CU-O75 were also able to induce apoptosis and caspase activation. Apoptosis was preceded by exclusion of the NF-κB proteins from the nucleus. To analyze the localization of NF-κB proteins within the cell compartments before and after the treatment with CU-O42, CU-O47 and CU-O75, we used confocal microscopy, electromobility shift (EMSA) and ELISA assays. Control cells tested positive for p50/p65 both within the cytoplasm and the nucleus. Following treatment with CU-O42 NF-κB was sequestered within the cytoplasm of the cell which occurred as early as 3h after exposure. In addition, all three analogs reduced the nuclear levels of NF-κB in a concentration-dependent manner when measured by EMSA and ELISA. Furthermore, CU-O47 and CU-O75 were able to inhibit TNFα induced luciferase expression in a HEK293T cell model where luciferase is controlled by an NF-κB promoter. A KINOMEscan platform (examining the activity of over 450 different kinases) showed that no NQBS analog screened (CU-O42 and CU-O75) inhibited any of the kinases in the assay. In addition, a proteasome inhibition assay tested negative for trypsin-like and chromotrypsin-like protease activity (CU-O42, CU-O47 and CU-O75). Stabilization of the inactive trimer of p50, p65 and IκBα was hypothesized as a potential mechanism of action of CU-O42 and CU-O75 through Internal Coordinate Mechanics (ICM) software. This binding hypothesis was further corroborated by cellular thermal shift assays (CETSA) with an increase of the IκBα melting temperatures (2.5-3°C) in whole cell lysates following rapid (30min) exposure to CU-O42 and CU-O75. Using a genome-wide regulatory network perturbation analysis (DeMAND) based on the RNA-Seq data collected from OCI-Ly10 cells treated with CU-O75, we identified IκBα as one of the potential targets of the compounds. Gene set enrichment analysis demonstrated NF-κB target gene downregulation using IC20 of CU-O75 at 24h (p=0.045). In vivo experiments were conducted in two models: (1) xenografts with human DLBCL cell lines of both ABC and GC subtype; and (2) myc cherry luciferase mouse model where mice spontaneously develop aggressive lymphomas. In both models, CU-O42 was able to inhibit tumor growth. Interestingly, in the xenograft model, malignant cell growth was inhibited in both ABC (HBL-1) and GC (OCI-Ly1) cells when compared to controls (p=0.01 and p=0.02). However, overall survival of mice with ABC xenografts treated with CU-042 significantly exceeded the survival of mice with GC xenografts (p<0.01) suggesting a more sustainable response in this subtype of disease, consistent with its dependency on NF-κB. Identification of a unique NQBS scaffold has led to the chemical synthesis of over 100 structural analogs with a potent inhibition on NF-κB nuclear translocation. They display potent activity across a panel of lymphoma cell lines, producing a survival benefit in mice implanted with an ABC-subtype of lymphoma. ICM, CETSA and DeMAND suggest that this is a direct effect mediated on the proteins within the p65/p50/IκBα complex. These findings point to a novel mechanism of action and warrant further research into potential clinical translation of this class of small molecules. Disclosures Califano: Thermo Fischer Scientific: Consultancy; Ipsen pharmaceuticals: Consultancy; Cancer Genetics Inc: Consultancy; Therasis Inc: Employment. O'Connor:Spectrum Pharmaceuticals: Consultancy, Honoraria, Research Funding; Takeda Millennium: Consultancy, Honoraria, Research Funding; Celgene: Consultancy, Research Funding; Bristol-Myers Squibb Company: Consultancy; Novartis: Consultancy, Honoraria; Seattle Genetics: Consultancy; Bayer: Consultancy, Honoraria; Mundipharma: Consultancy, Honoraria, Research Funding; Acetylon Pharmaceuticals, INC: Consultancy.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1509-1509
Author(s):  
Katsuyoshi Takata ◽  
Lauren C. Chong ◽  
Avinash Thakur ◽  
Tomohiro Aoki ◽  
Anja Mottok ◽  
...  

Background: The tumor-associated antigen PRAME is over-expressed in several types of cancer and is currently investigated as a therapeutic target for T-cell immunotherapy. Our previous integrative genomic study in diffuse large B-cell lymphoma (DLBCL) identified PRAME deletion to be correlated with patient outcome and an immunologically "cold" tumor microenvironment. However, it remains an open question whether PRAME expression significantly contributes to differential treatment outcomes and tumor microenvironment crosstalk across various B-cell lymphoma subtypes. Material and Methods: We performed an immunohistochemical (IHC) screen in a large cohort of B-cell lymphomas (de novo DLBCL; N=347, follicular lymphoma (FL); N= 166, mantle cell lymphoma (MCL); N= 180), and classical Hodgkin lymphoma (HL); N= 166) to assess PRAME expression as a prognostic biomarker. Moreover, to investigate PRAME-expression associated tumor microenvironment composition and function, we correlated PRAME IHC results with single cell RNA sequencing data of more than 127,000 cells from 22 HL tissue specimens. Results: PRAME IHC analysis revealed frequent PRAME over-expression in HL (115/166, 69%), followed by DLBCL (104/319, 33%), FL (13/166, 8%), and MCL (14/180, 8%). Interestingly, only HL showed a significant treatment outcome correlation, whereas other B-cell lymphoma subtypes did not. Specifically, using a previously published HL cohort (Steidl et al, NEJM 2010) PRAME-negative Hodgkin Reed Sternberg (HRS) cells indicated significantly shorter overall survival (P = 0.008) and disease-specific survival (P = 0.042 ). To characterize PRAME-specific microenvironment composition and function in HL, we analyzed T-, B-, NK-cell, and macrophage subsets in PRAME-positive (17 of 22 cases) vs -negative (5 of 22 cases) tumor samples using single cell RNA sequencing data. From 22 expression-based microenvironment cell clusters that were annotated and assigned to a cell type based on gene expression, all three CD4 helper T-cell clusters were de-enriched in PRAME-negative samples, and the CD4 non-Treg proportion was significantly lower in PRAME-negative samples (P = 0.049). Strikingly, when focusing on phenotypic features of cells within the CD4 non-Treg T-cell cluster, CXCL13 was identified as the most up-regulated gene in PRAME-negative samples. When interrogating published HRS cell transcriptome data (Steidl et al, Blood 2012), immune response pathways including chemokine receptors and chemokine ligands were up-regulated in PRAME-negative HRS cell samples. Of specific interest, CXCR5, the cognate receptor for CXCL13, was significantly upregulated as a member of the chemokine pathway (P = 0.0086) in PRAME-negative HRS cell samples. These results suggest that crosstalk between CXCL13 (produced in the microenvironment) and CXCR5 (expressed on HRS cells) contributes to tumor maintenance in PRAME-negative HL. Finally, to explore potential therapeutic approaches for PRAME-negative HL cells, we focused on 3 HL-derived cell lines (L540, L591, DEV) with low PRAME expression and exposed these lines to DNMT or HDAC inhibitors. DNMT inhibitor treatment showed clear restoration of PRAME expression in a dose dependent manner, but no restoration was found by HDAC inhibitor treatment. To investigate the effect of DNA methylation in transcriptional regulation of PRAME in HL cells, we performed bisulfite sequencing in the PRAME CpG promoter region in PRAME down-regulated (L540, L591, DEV) and up-regulated (HD-LM2, KMH-2, L1236) cell lines and found hypermethylation in PRAME low vs high cell lines. Moreover, the CpG promoter region was significantly demethylated by DNMT inhibitor treatment in cell lines with low PRAME expression. Conclusion: We discovered that PRAME protein expression was correlated with outcome in HL and identified specific T-cell subsets in PRAME-negative patients. PRAME restoration by DNMT inhibitors might represent a new therapeutic avenue in combination with modern immunotherapies, such as PRAME-specific T-cell therapy or PD1 inhibition. Disclosures Scott: Roche/Genentech: Research Funding; Janssen: Consultancy, Research Funding; NanoString: Patents & Royalties: Named inventor on a patent licensed to NanoSting [Institution], Research Funding; Celgene: Consultancy. Steidl:Nanostring: Patents & Royalties: Filed patent on behalf of BC Cancer; Bristol-Myers Squibb: Research Funding; Roche: Consultancy; Seattle Genetics: Consultancy; Bayer: Consultancy; Juno Therapeutics: Consultancy; Tioma: Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3966-3966
Author(s):  
Mona Karbalivand ◽  
Weiguo Han ◽  
Luciana L Almada ◽  
Stephen M Ansell ◽  
Martin Fernandez-Zapico ◽  
...  

Waldenström macroglobulinemia (WM) is a low-grade B-cell lymphoma associated with the accumulation of lymphoplasmacytic cells in the bone marrow (BM) and a high level of monoclonal IgM protein in the serum. Genome-wide studies revealed genomic alternations in WM, with the most prevalent being a point mutation in the myeloid differentiation primary response gene 88 (MyD88) resulting in an amino acid substitution (L265P) that is present in over 90% of WM patients. MyD88 is an effector of Toll-like receptor (TLR) signaling pathway that mediates inflammatory cytokine expression and secretion upon activation. Here, we found that activation of the TLR-MyD88 pathway in WM cells carrying the MyD88 L265P somatic mutation increases the expression of IL-6 and CCL2, two cytokines known to participate in the pathobiology of several neoplasms including B cell malignancies. Furthermore, IL-6 has been shown to modulate IgM secretion and malignant B cell growth in WM. We demonstrate that an active ERK1/2 pathway, which is elevated in WM patient samples, is required to maintain IL-6 and CCL2 expression in BCWM.1 (p=0.0339) and RPCI-WM1 (p=0.0005) cells. Further characterization identified a change in the chromatin landscape in response to TLR-MyD88 activation in WM cells. We found increased levels of trimethylation of histone 3 lysine 4 (H3K4me3) at the promoters of the inflammatory cytokines IL-6 and CCL2 by chromatin immunoprecipitation (ChIP) assay followed by qPCR (ChIP-qPCR). The H3K4me3 modification is catalyzed by six related homologs of the yeast histone methyltransferase (HMT) family. Further analysis identified the Mixed-lineage leukemia 1 (MLL1) as the enzyme bound to these promoters in response to TLR-MyD88 stimulation of WM cells. Analysis of WM cell lines and primary WM patient cells showed that MLL1 and its binding partner, menin, are expressed at significantly higher levels in CD19+CD138+cells from WM patients compared to CD19+B cells from peripheral blood of healthy donors (p<0.001). We also found an increase in H3K4me3 deposition on IL-6 and CCL2 promoters during early (1-3 hr) and late (12-24 hr) kinetics following TLR-MyD88 stimulation. This also coincided with increased deposition of MLL1 on these cytokine promoters by ChIP-qPCR. Disruption of menin-MLL1 using the MI-2 or MI-503 menin-MLL1 inhibitors significantly reduced IL-6 and CCL2 expression in WM cell lines (BCWM.1 p=0.039; RPCI-WM1 p=0.0041). This also results in significantly reduced IgM expression (p<0.0001) and secretion at inhibitor dose (5 μM) that has no effect on cell proliferation. Finally, MLL1 knockdown using RNAi significantly reduces IgM expression in BCWM.1 (p<0.0001), MWCL (p=0.0016) and RPCI-WM1 (p<0.0001) and IgM secretion in BCWM.1 (p<0.0001) and MWCL-1 (p<0.0001). Taken together, these results identify a novel role for menin-MLL1 in regulating inflammatory cytokines and IgM expression and secretion in WM and provide the rationale for targeting these molecules in WM patients. Disclosures Ansell: Mayo Clinic Rochester: Employment; Mayo Clinic Rochester: Employment; Regeneron: Research Funding; Seattle Genetics: Research Funding; Trillium: Research Funding; Seattle Genetics: Research Funding; Regeneron: Research Funding; Trillium: Research Funding; Bristol-Myers Squibb: Research Funding; Mayo Clinic Rochester: Employment; Trillium: Research Funding; Affimed: Research Funding; Affimed: Research Funding; Regeneron: Research Funding; Trillium: Research Funding; Mayo Clinic Rochester: Employment; Bristol-Myers Squibb: Research Funding; Mayo Clinic Rochester: Employment; LAM Therapeutics: Research Funding; Bristol-Myers Squibb: Research Funding; Seattle Genetics: Research Funding; LAM Therapeutics: Research Funding; LAM Therapeutics: Research Funding.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 632-632
Author(s):  
Andrew J Mungall ◽  
Ryan D Morin ◽  
Jianghong An ◽  
Oleksandr Yakovenko ◽  
Merrill Boyle ◽  
...  

Abstract Abstract 632 Introduction: Non-Hodgkin lymphomas (NHL) are the most common type of lymphoma and can be broadly classified as indolent (slow-growing) diseases, progressing over many years; and aggressive (fast-growing) diseases, which progress rapidly. The latter class includes diffuse large B-cell lymphoma (DLBCL), which accounts for approximately 30% of all NHL diagnoses. Three DLBCL subtypes have been identified based on gene expression profiling, namely: germinal center B-cell (GCB), activated B-cell (ABC) and primary mediastinal B-cell lymphoma (PMBCL). These subtypes show substantial differences in response to treatment and ultimate disease outcome, suggesting that molecular subtyping is an important prognostic indicator and that each subtype may benefit from a distinct treatment regimen. Despite recent advances in cancer genomics revealing molecular and mutational differences between these subtypes, further studies focused on the common NHL subtypes are required to identify critical players in the pathogenesis of DLBCL that may be targeted by pharmacological intervention to improve patient outcome. Methods: Using ultra-high throughput whole genome shotgun sequencing (WGSS) and whole transcriptome shotgun sequencing (WTSS/RNA-seq) we have discovered protein-coding mutations in NHL genomes. With a focus on recurrent and likely gain-of-function mutations we have established procedures to model the three-dimensional structures of mutant proteins and using a computational “molecular docking” pipeline have identified candidate molecules with specificity for the mutant protein. These small molecule compounds are acquired and tested in cell proliferation assays against a suite of DLBCL cell lines characterized for target mutations. Results: Mutations affecting a single key tyrosine in the catalytic site of enhancer of zeste, homolog 2 (EZH2), a member of the Polycomb-group family involved in transcriptional repression were identified (Morin, R. et al. 2010 Nature Genetics 42(2):181-5). This mutation, in a gene previously unknown to be mutated in cancer, is restricted to the GCB subtype of lymphomas and is highly prevalent in patient samples and DLBCL cell lines. Mutations have also been observed in other proteins involved in epigenetic regulation and thus afford potentially novel therapeutic targets. In proof-of-principle experiments small molecule inhibitors were identified using molecular docking approaches to target the effect of EZH2 mutations in both mutant and wild-type DLBCL cell lines. We identified and imported 96 compounds from the Developmental Therapeutic Program NCI/NIH repository. These compounds were tested in alamarBlue cell proliferation assays revealing three with activity at 10uM concentration in EZH2 mutant but not wild-type cells. Computational optimization of these compounds is underway to identify related compounds with improved activities at reduced concentrations. Conclusions: High-throughput sequencing platforms have enabled the identification of recurrent, non-synonymous protein mutations in tumor genomes and transcriptomes. Such a catalogue of mutations provides new avenues of exploration for targeted therapy including small molecule inhibitors. Despite intensive efforts launched in recent years to determine the crystal structure for every human protein, many (including EZH2) do not currently have three dimensional structures. This poses a challenge to novel drug discovery but can be overcome using homology modeling and/or targeting other members of a pathway. Our observations also demonstrate the importance of epigenetic regulation in NHL tumorigenesis and thus provide potential new therapeutic targets. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document