scholarly journals Tracking T Cell Activation By OX40 Immuno-PET: A Novel Strategy for Imaging of Graft Versus Host Disease

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4527-4527
Author(s):  
Federico Simonetta ◽  
Israt S. Alam ◽  
Aaron T. Mayer ◽  
Surya Murty ◽  
Ophir Vermesh ◽  
...  

Abstract BACKGROUND Graft versus host disease (GvHD) is a major complication of allogeneic hematopoietic cell transplantation (HCT) mediated by donor immune cells reacting against host tissues. GvHD diagnosis is often challenging and superior non-invasive imaging strategies specifically detecting early GvHD are critically needed to improve clinical care of HCT recipients. Positron emission tomography (PET) imaging for GvHD diagnosis employing conventional tracers (18F-FDG) have largely been confounding, mainly due to their low specificity. Monitoring T cell activation and expansion using T-cell targeted PET tracers seems a more promising approach (Ronald et al., Cancer Res 77(11) 2893, 2017). We recently reported a novel immuno-PET tracer (64Cu-DOTA-mAbOX40) that enables non-invasive imaging of activated murine T cells expressing the cell surface activation marker OX40 (Alam et al., JCI 128(6) 2569, 2018). In the present work, we evaluated the utility of this immuno-PET strategy to image activated T cells in a major MHC-mismatch mouse model of acute GvHD. METHODS Balb/C (H-2Kd) recipients were irradiated with 8.8 Gy and on the same day received intravenously (i.v.) 5 x 10e6 T-cell depleted bone marrow (BM) cells with or without 1 x 10e6 CD4 and CD8 T cells positively selected from C57BL/6 (H-2Kb) mice. Severity of GvHD was assessed by clinical GvHD scoring. Flow cytometry of lymphoid organs from BM control and GvHD mice was performed at day 7 after HCT to determine OX40 protein expression on immune cells. For imaging studies, anti-OX40 monoclonal antibody (mAb) specific for murine OX40 (clone: OX86, BioXcell) was conjugated to DOTA chelate. The conjugate was evaluated by mass spectrometry (an average ratio of 1.4 DOTAs per mAb was obtained) and subsequently radiolabeled with 64CuCl2 (final specific activity 10-15μCi/μg and radiochemical purity >99%). Mice were tail-vein injected with 64Cu-DOTA-mAbOX40 (100 µCi, i.v.) at day 7 after HCT and PET-CT imaging performed 24 hours after injection. Immediately following PET-CT mice were euthanized and radioactivity measured in dissected weighed tissues using a gamma-counter. RESULTS Flow cytometry analysis of OX40 expression in lymphoid organs isolated at day 7 after HCT revealed significantly higher proportions and absolute numbers of OX40 expressing cells in the spleen and cervical lymph nodes (LN) isolated from mice that received BM + T cells (GvHD group) compared with mice having received BM cells alone (p<0.05). In vivo OX40-ImmunoPET performed at day 8 after HCT revealed increased radiotracer uptake in spleen (p < 0.0001), mesenteric LN (p < 0.01) and the abdominal region (p < 0.001) of mice with GvHD compared with BM control mice (Fig. 1A and B). Interestingly, 64Cu-DOTA-mAbOX40 uptake in spleen, mesenteric LN and abdominal region positively correlated with the GvHD score [spleen, r=0.6, p=0.0018; mesenteric LN, r=0.42, p=0.042; abdomen, r=0.77, p < 0.0001]. Biodistribution analysis using gamma counting of tissues confirmed the PET results showing the same trends; significantly increased uptake in GvHD mice compared with BM controls in spleen (p < 0.01), cervical LN (p < 0.01), mesenteric LN (p < 0.01) and GvHD target organs e.g. small intestine (p < 0.05), colon (p < 0.05) and skin (p < 0.01). Importantly, outcome analysis of GvHD mice receiving tracer doses of OX40 mAb at day 7 after HCT did not reveal any significant worsening of GvHD in terms of survival, body weight loss or GvHD score, compared with mice receiving the appropriate isotype control, supporting the safety of this OX40-targeted imaging approach. CONCLUSION The OX40 immuno-PET tracer enabled specific imaging of alloreactive OX40+ activated T cells in a murine model of acute GvHD. Efforts are ongoing to develop a humanized version of the 64Cu-DOTA-mAbOX40 tracer that will provide a readily translatable tool for GvHD diagnosis in the clinical setting. FIGURE 1. 64Cu-DOTA-AbOX40 PET-CT imaging in a mouse model of acute GvHD. (A) Representative day 8 64Cu-DOTA-AbOX40 PET-CT images in BM controls or GvHD group. H, heart (including cardiac muscle and blood); Li, liver; Sp, spleen; Bl, blood vessels and venous sinuses; BM, bone marrow; Ab, abdomen. (B) Quantitative region of interest PET image analysis of indicated organs in BM controls (n=12, blue filled boxes) or GvHD mice (n=12, red filled boxes). Outliers are represented as dots. [Mann-Whitney test , ****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05]. Disclosures Gambhir: CellSight Inc: Equity Ownership, Membership on an entity's Board of Directors or advisory committees.

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3003-3003
Author(s):  
Jun Li ◽  
Julie Leconte ◽  
Kenrick Semple ◽  
Jessica Heinrichs ◽  
Claudio Anasetti ◽  
...  

Abstract Abstract 3003 ICOS provides an important costimulation to promote T-cell activation and function. Using a knock-in mouse strain, termed ICOS-YF, in which the cytoplasmic tail of ICOS cannot activate phosphoinositide 3-kinase (PI3K), we have shown that ICOS-PI3K signaling axis is critical for the generation of follicular helper T cells. We also observed that, in both CD4+ and CD8+ T cells, ICOS could potentiate TCR-mediated calcium flux in a PI3K-independent manner in vitro. Although ICOS can potentiate TCR-mediated calcium flux independent of PI3K, its biological significance is unclear. To address this question, we studied the function of ICOS-YF T cells in comparison with ICOS wild-type (WT) and knock-out (KO) T cells in MHC-mismatched bone marrow transplantation (BMT) models. Severity of acute graft-versus-host disease (GVHD) was evaluated based on recipient survival, body weight change, and pathologic scores. Consistent with the data previously published by us and others, ICOS KO T cells had significantly reduced ability to cause acute GVHD as compared to WT T cells. We further observed that YF T cells were significantly more capable in causing GVHD than KO T cells, but less capable than WT T cells. Mechanically, the levels of serum TNFa and IFNg were similar in the recipients of YF or KO T cells, but significantly lower than those of WT T cells. However, on the per-cell basis, YF CD8+ T cells expressed similar levels of intracellular IFNg as WT T cells, but significantly higher than KO T cells. We further compared the ability of CD4+ or CD8+ T cells alone in the induction of acute GVHD, and found that CD4+ T cells from YF and KO mice were similarly impaired in their capacity to induce acute GVHD. In contrast, the pathogenic capacity of CD8+ T cells from YF mice was comparable to that of WT cells, whereas KO CD8+ T cells were significantly less pathogenic. These results suggest that although both CD4+ and CD8+ T cells depend on ICOS costimulation, the downstream signaling pathways they utilize are distinct: CD4+ T cells depend on ICOS-PI3K signaling whereas CD8+ T cells are more dependent on PI3K-independent pathways, probably calcium signaling. Taken together, our study reveals a complexity in ICOS signaling mechanisms in T cell activation and GVHD induction. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4476-4476
Author(s):  
Marie T Rubio ◽  
Maud D'Aveni ◽  
Tereza Coman ◽  
Julien Rossignol ◽  
Julie Bruneau ◽  
...  

Background Myeloid derived suppressive cells (MDSCs) represent a heterogeneous population of cells endowed with immunosuppressive properties. They have been first described in the tumor microenvironment. Some mature MDSCs either induced by GM-CSF and IL-13 (Highfill et al., Blood 2010) or mobilized by G-CSF (Joo et al., Immunology 2009) have been reported to control experimental GVHD by inhibiting alloreactive T cell proliferation. We describe here the existence in mice and humans of a not yet characterized population of GCSF-mobilized hematopoïetic cells with phenotypic characteristics of immature MDSCs (called therefore pro-MDSCs) that can inhibit GVHD by a distinct mechanism than those described with classical mature MDSCs. Methods In the C57BL6 mouse and human, G-CSF mobilized MDSCs were collected and analyzed in the spleen and PBSC using several antibodies directed against various markers of maturity, lineage specific antigens and chemokine receptors. Depending on the expression of maturity antigens various population were sorted. In vitro, functions of sorted MDSC were analyzed by co-cultures with T cells activated either by anti-CD3 and CD28 mAbs or allogeneic dendritic cells. In vivo, the effect of various population of MDSCs on GVHD was assessed either by the transfer of murine C57BL6 (H-2b) cells (2x106 splenic T cells + 5x106 T depleted bone marrow cells +/- 0.5x106 MDSC subtypes) into lethally irradiated BALB/c (H-2d) recipients or by injecting 2x105 human pro-MDSCs with 2.5x106 human PBMC into 2 Gy irradiated Nod/SCID/gammac-/- mice. In 19 allografted patients, proportions of MDSC subpopulations contained in the peripheral stem cell graft were correlated to the occurrence of acute GVHD and to the post-transplant peripheral blood levels of conventional proliferating T cells and CD4+ CD25+ CD127low reguatory T cells (T regs). Results In the G-CSF mobilized cells, immature Lin- Sca1high cKithigh CD34+ CX3CR1+ CD16/32+ CD11b+ Ly6C+ and Lin- CD34+ HLA-DR- CD33high CD11blow CD14+ cell populations were identified in mice spleen and human PBSC, respectively. Because the pattern of maturity antigen expression, these populations were named pro-MDSCs. The mature MDSC counterparts shared the same differentiation phenotype without the markers of maturity. In vitro, both murine and human pro-MDSCs, but not the corresponding mature MDSCs, could inhibit the proliferation and induced the apoptosis of activated T cells (p<0,001). The inhibition of T cell activation by pro-MDSCs required IFN-gamma produced by activated T-cells and the production of NO by pro-MDSCs in response to IFN-gamma. NO suppressed T-cell functions through impaired responses to IL2 and induction of apoptosis. In vivo, in the C57BL6 to BALB/c GVHD model, the administration of murine pro-MDSCs significantly reduced the development of clinical and histological GVHD signs as compared to allografted mice without pro-MDSCs or with GCSF-mobilized mature MDSCs (p=0,03). Murine pro-MDSCs could migrate to site of allo-priming and induced the apoptosis of allogeneic T cells when compared to mice allografted without pro-MDSCs (p<0,01). In mice that had received pro-MDSCs, we observed that apoptotic T cells could be engulfed by phagocytes and that those phagocytes produced high levels of cytokines (IL-10, TGF-beta), which was associated with increased induced CD4+CD25+Foxp3+ T regs leading to the induction of tolerance. These observations were not seen in mice allografted without pro-MDSCs (p<0,05). Human pro-MDSCs could protect all xeno-grafted Nod/SCID/gamma c-/- mice from GVHD mortality as compared to 100% GVHD lethality in controlled xeno-grafted mice without pro-MDSCs (p<0,001). Allografted patients having received a stem cell graft containing levels of Pro-MDSCs >10% of the CD34+ fraction had a significantly reduced risk of developing grade II-IV acute GVHD (p= 0,04) and reduced numbers of proliferating conventional T cells but higher numbers of T regs in the peripheral blood on days 15 and 30 post-HSCT (p<0.05). No correlation between the occurrence of acute GVHD and the proportions of mature MDSCs contained in the graft was observed. Conclusion We have characterized a new homogeneous population of G-CSF mobilized immature MDSCs, which has been named pro-MDSC that can regulate alloreactive T cell activation in vitro and in vivo by inducing tolerance with potential therapeutic application in allogeneic HSCT. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
pp. annrheumdis-2020-219335
Author(s):  
Emma Garcia-Melchor ◽  
Giacomo Cafaro ◽  
Lucy MacDonald ◽  
Lindsay A N Crowe ◽  
Shatakshi Sood ◽  
...  

ObjectivesIncreasing evidence suggests that inflammatory mechanisms play a key role in chronic tendon disease. After observing T cell signatures in human tendinopathy, we explored the interaction between T cells and tendon stromal cells or tenocytes to define their functional contribution to tissue remodelling and inflammation amplification and hence disease perpetuation.MethodsT cells were quantified and characterised in healthy and tendinopathic tissues by flow cytometry (FACS), imaging mass cytometry (IMC) and single cell RNA-seq. Tenocyte activation induced by conditioned media from primary damaged tendon or interleukin-1β was evaluated by qPCR. The role of tenocytes in regulating T cell migration was interrogated in a standard transwell membrane system. T cell activation (cell surface markers by FACS and cytokine release by ELISA) and changes in gene expression in tenocytes (qPCR) were assessed in cocultures of T cells and explanted tenocytes.ResultsSignificant quantitative differences were observed in healthy compared with tendinopathic tissues. IMC showed T cells in close proximity to tenocytes, suggesting tenocyte–T cell interactions. On activation, tenocytes upregulated inflammatory cytokines, chemokines and adhesion molecules implicated in T cell recruitment and activation. Conditioned media from activated tenocytes induced T cell migration and coculture of tenocytes with T cells resulted in reciprocal activation of T cells. In turn, these activated T cells upregulated production of inflammatory mediators in tenocytes, while increasing the pathogenic collagen 3/collagen 1 ratio.ConclusionsInteraction between T cells and tenocytes induces the expression of inflammatory cytokines/chemokines in tenocytes, alters collagen composition favouring collagen 3 and self-amplifies T cell activation via an auto-regulatory feedback loop. Selectively targeting this adaptive/stromal interface may provide novel translational strategies in the management of human tendon disorders.


Blood ◽  
2011 ◽  
Vol 118 (3) ◽  
pp. 795-803 ◽  
Author(s):  
Katia Urso ◽  
Arantzazu Alfranca ◽  
Sara Martínez-Martínez ◽  
Amelia Escolano ◽  
Inmaculada Ortega ◽  
...  

Abstract The nuclear factor of activated T cells (NFAT) family of transcription factors plays important roles in many biologic processes, including the development and function of the immune and vascular systems. Cells usually express more than one NFAT member, raising the question of whether NFATs play overlapping roles or if each member has selective functions. Using mRNA knock-down, we show that NFATc3 is specifically required for IL2 and cyclooxygenase-2 (COX2) gene expression in transformed and primary T cells and for T-cell proliferation. We also show that NFATc3 regulates COX2 in endothelial cells, where it is required for COX2, dependent migration and angiogenesis in vivo. These results indicate that individual NFAT members mediate specific functions through the differential regulation of the transcription of target genes. These effects, observed on short-term suppression by mRNA knock-down, are likely to have been masked by compensatory effects in gene-knockout studies.


2021 ◽  
Vol 478 (6) ◽  
pp. 1303-1307
Author(s):  
Kriti Bahl ◽  
Jeroen P. Roose

Signaling pathways play critical roles in regulating the activation of T cells. Recognition of foreign peptide presented by MHC to the T cell receptor (TCR) triggers a signaling cascade of proximal kinases and adapter molecules that lead to the activation of Effector kinase pathways. These effector kinase pathways play pivotal roles in T cell activation, differentiation, and proliferation. RNA sequencing-based methods have provided insights into the gene expression programs that support the above-mentioned cell biological responses. The proteome is often overlooked. A recent study by Damasio et al. [Biochem. J. (2021) 478, 79–98. doi:10.1042/BCJ20200661] focuses on characterizing the effect of extracellular signal-regulated kinase (ERK) on the remodeling of the proteome of activated CD8+ T cells using Mass spectrometric analysis. Surprisingly, the Effector kinase ERK pathway is responsible for only a select proportion of the proteome that restructures during T cell activation. The primary targets of ERK signaling are transcription factors, cytokines, and cytokine receptors. In this commentary, we discuss the recent findings by Damasio et al. [Biochem. J. (2021) 478, 79–98. doi:10.1042/BCJ20200661] in the context of different Effector kinase pathways in activated T cells.


Science ◽  
2021 ◽  
Vol 372 (6543) ◽  
pp. eaba4220 ◽  
Author(s):  
Tao Yue ◽  
Xiaoming Zhan ◽  
Duanwu Zhang ◽  
Ruchi Jain ◽  
Kuan-wen Wang ◽  
...  

Reactive oxygen species (ROS) increase in activated T cells because of metabolic activity induced to support T cell proliferation and differentiation. We show that these ROS trigger an oxidative stress response that leads to translation repression. This response is countered by Schlafen 2 (SLFN2), which directly binds transfer RNAs (tRNAs) to protect them from cleavage by the ribonuclease angiogenin. T cell–specific SLFN2 deficiency results in the accumulation of tRNA fragments, which inhibit translation and promote stress-granule formation. Interleukin-2 receptor β (IL-2Rβ) and IL-2Rγ fail to be translationally up-regulated after T cell receptor stimulation, rendering SLFN2-deficient T cells insensitive to interleukin-2’s mitogenic effects. SLFN2 confers resistance against the ROS-mediated translation-inhibitory effects of oxidative stress normally induced by T cell activation, permitting the robust protein synthesis necessary for T cell expansion and immunity.


2020 ◽  
Author(s):  
Marcos P. Damasio ◽  
Julia M. Marchingo ◽  
Laura Spinelli ◽  
Doreen A. Cantrell ◽  
Andrew J.M. Howden

SummaryThe integration of multiple signalling pathways that co-ordinate T cell metabolism and transcriptional reprogramming is required to drive T cell differentiation and proliferation. One key T cell signalling module is mediated by extracellular signal-regulated kinases (ERKs) which are activated in response to antigen receptor engagement. The activity of ERKs is often used to report antigen receptor occupancy but the full details of how ERKs control T cell activation is not understood. Accordingly, we have used mass spectrometry to explore how ERK signalling pathways control antigen receptor driven proteome restructuring in CD8 + T cells to gain insights about the biological processes controlled by ERKs in primary lymphocytes. Quantitative analysis of >8000 proteins identified only 900 ERK regulated proteins in activated CD8+ T cells. The data identify both positive and negative regulatory roles for ERKs during T cell activation and reveal that ERK signalling primarily controls the repertoire of transcription factors, cytokines and cytokine receptors expressed by activated T cells. The ERKs thus drive the transcriptional reprogramming of activated T cells and the ability of T cells to communicate with external immune cues.


2020 ◽  
Author(s):  
Anno Saris ◽  
Tom D.Y. Reijnders ◽  
Esther J. Nossent ◽  
Alex R. Schuurman ◽  
Jan Verhoeff ◽  
...  

AbstractOur understanding of the coronavirus disease-19 (COVID-19) immune response is almost exclusively derived from studies that examined blood. To gain insight in the pulmonary immune response we analysed BALF samples and paired blood samples from 17 severe COVID-19 patients. Macrophages and T cells were the most abundant cells in BALF. In the lungs, both CD4 and CD8 T cells were predominantly effector memory cells and expressed higher levels of the exhaustion marker PD-1 than in peripheral blood. Prolonged ICU stay associated with a reduced proportion of activated T cells in peripheral blood and even more so in BALF. T cell activation in blood, but not in BALF, was higher in fatal COVID-19 cases. Increased levels of inflammatory mediators were more pronounced in BALF than in plasma. In conclusion, the bronchoalveolar immune response in COVID-19 has a unique local profile that strongly differs from the immune profile in peripheral blood.SummaryThe bronchoalveolar immune response in severe COVID-19 strongly differs from the peripheral blood immune profile. Fatal COVID-19 associated with T cell activation blood, but not in BALF.


Blood ◽  
2006 ◽  
Vol 107 (3) ◽  
pp. 1010-1017 ◽  
Author(s):  
Peta J. O'Connell ◽  
Xiangbin Wang ◽  
Matilde Leon-Ponte ◽  
Corrie Griffiths ◽  
Sandeep C. Pingle ◽  
...  

AbstractAdaptive immunity is triggered at the immune synapse, where peptide-major histocompatibility complexes and costimulatory molecules expressed by dendritic cells (DCs) are physically presented to T cells. Here we describe transmission of the inflammatory monoamine serotonin (5-hydroxytryptamine [5-HT]) between these cells. DCs take up 5-HT from the microenvironment and from activated T cells (that synthesize 5-HT) and this uptake is inhibited by the antidepressant, fluoxetine. Expression of 5-HT transporters (SERTs) is regulated by DC maturation, exposure to microbial stimuli, and physical interactions with T cells. Significantly, 5-HT sequestered by DCs is stored within LAMP-1+ vesicles and subsequently released via Ca2+-dependent exocytosis, which was confirmed by amperometric recordings. In turn, extracellular 5-HT can reduce T-cell levels of cAMP, a modulator of T-cell activation. Thus, through the uptake of 5-HT at sites of inflammation, and from activated T cells, DCs may shuttle 5-HT to naive T cells and thereby modulate T-cell proliferation and differentiation. These data constitute the first direct measurement of triggered exocytosis by DCs and reveal a new and rapid type of signaling that may be optimized by the intimate synaptic environment between DCs and T cells. Moreover, these results highlight an important role for 5-HT signaling in immune function and the potential consequences of commonly used drugs that target 5-HT uptake and release.


1997 ◽  
Vol 3 (4) ◽  
pp. 238-242 ◽  
Author(s):  
JW Lindsey ◽  
RH Kerman ◽  
JS Wolinsky

Activated T cells are able to stimulate proliferation in resting T cells through an antigen non-specific mechanism. The in vivo usefulness of this T cell-T cell activation is unclear, but it may serve to amplify immune responses. T cell-T cell activation could be involved in the well-documented occurrence of multiple sclerosis (MS) exacerbations following viral infections. Excessive activation via this pathway could also be a factor in the etiology of MS. We tested the hypothesis that excessive T cell-T cell activation occurs in MS patients using in vitro proliferation assays comparing T cells from MS patients to T cells from controls. When tested as responder cells, T cells from MS patients proliferated slightly less after stimulation with previously activated cells than T cells from controls. When tested as stimulator cells, activated cells from MS patients stimulated slightly more non-specific proliferation than activated cells from controls. Neither of these differences were statistically significant We conclude that T cell proliferation in response to activated T cells is similar in MS and controls.


Sign in / Sign up

Export Citation Format

Share Document