scholarly journals RPS15 mutations Repress mRNA Translation in Chronic Lymphocytic Leukemia Cells

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1843-1843
Author(s):  
Stavroula Ntoufa ◽  
Stamatia Laidou ◽  
Fotis Psomopoulos ◽  
Marina Gerousi ◽  
Larry Mansouri ◽  
...  

Abstract We and others recently reported mutations within the RPS15 gene, encoding a component of the 40S ribosomal subunit, in clinically aggressive chronic lymphocytic leukemia (CLL). RPS15 mutations resided within an evolutionary conserved region, alluding to an oncogenic rather than a tumor-suppressor role. Our pilot functional analysis revealed that, similar to other ribosomal proteins (RPs), RPS15 also binds MDM2 and may impact on the p53 response. Here, we performed ribosome profiling in order to gain global insight into changes in translation induced by RPS15 mutations in CLL cells. This technique involves measuring translational efficiency (TE), by comparing the levels of ribosome-associated mRNA footprints against the total mRNA for each gene. For 6 CLL cases bearing mutant (mut, n=3) or wildtype (wt, n=3) RPS15, we obtained both ribosome-protected footprints (RPFs) and matching mRNA sequencing data. In parallel, we created stable MEC1 CLL cell lines expressing an additional copy of wt or mut RPS15 (131S) by lentiviral transduction; validation of the transgene expression was performed by Sanger sequencing of amplified cDNAs. Ribosome footprinting and subsequent library preparation of RPFs and total mRNA for all samples was performed with the Illumina Truseq Ribo Profile Kit and all libraries were sequenced on a NextSeq500 instrument. Reads were aligned to the human hg19 genome using Bowtie2. SystemPipeR was used to determine the percentage of reads mapping to 5' UTRs, CDS, and 3' UTRs and triplet periodicity was assessed using RibORF. The RPFs were of high quality, as assessed by expected RPF size (28-30nt), CDS enrichment, and triplet periodicity. To determine differentially expressed genes between RPS15-mut vs RPS15-wt cases we used DESeq2 while, for differentially translated genes we used Xtail. Changes in transcription and translation between PRS15-wt vs RPS15-mut cases showed limited overlap in both primary CLL cells and cell lines (12.8% and 12.9%, respectively), indicating the potential of ribosome profiling to reveal additional information compared to RNA sequencing alone. In primary CLL cells, 474 genes showed differences only at the transcription level (log2FC mRNA>I1I, p<0.05), while 742 genes were modulated only at the translation level (log2FC RPF>I1I, p<0.05). We identified 322 genes with differential TE (log2FC TE<I1I, p<0.05) between PRS15-wt vs RPS15-mut CLL cases; 262/322 (81%) showed reduced TE in RPS15-mut versus RPS15-wt cases. Similar analysis for the stable MEC1 cell lines revealed 749 genes displaying differences only at the transcription level (log2FC mRNA>I1I), while 1859 genes were regulated only at the translation level (log2FC RPF>I1I). Overall, 771 genes displayed differential TE (log2FC TE<I1I, adjusted p<0.1) between PRS15-wt vs RPS15-mut MEC1 cell lines; 48% of the genes showed reduced TE in mut vs wt cell lines and the remaining 52% augmented TE. The slightly different results compared to those obtained from primary CLL cells, may be attributed to the following reasons: (i) MEC1 cells are TP53-aberrant; (ii) the PRS15-wt cell line overexpresses the RPS15 gene compared to primary CLL cells; and,( iii) the RPS15-mut cell line expresses both the wt and mut RPS15 mRNAs (22% of the mapped reads correspond to the mut RPS15 and 78% to the wt gene, respectively). Gene ontology analysis (Enrichr) of the genes showing differential TE, revealed that in both primary CLL cells and MEC1 cell lines a large fraction of the deregulated transcripts is implicated in RNA binding processes (adj-p=0.0001; adj-p=1.98X10^-13, respectively) which are known to induce translational repression. Interestingly, in primary CLL cells, amongst genes with reduced TE we identified genes implicated in tRNA biosynthesis, protein processing in the endoplasmatic reticulum and the Hippo signaling pathway (p<0.01). Additionally, enrichment analysis revealed that a proportion of genes with reduced TE were targets of the MYC transcription factor (adj-p=0.0005). RP genes, despite unchanged mRNA levels, showed changes in RPF levels and differential TE, suggesting that RPs are also deregulated at the translational level. In conclusion, we show that RPS15 mutations rewire the translation program of CLL cells by reducing the TE of critical molecules, including translation initiation factors and other regulatory elements. Disclosures Hadzidimitriou: Abbvie: Research Funding; Gilead: Research Funding; Janssen: Honoraria, Research Funding. Stamatopoulos:Janssen: Honoraria, Research Funding; Abbvie: Honoraria, Research Funding; Gilead: Honoraria, Research Funding.

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3110-3110
Author(s):  
Stamatia Laidou ◽  
Stavroula Ntoufa ◽  
Sofia Papanikolaou ◽  
Konstantia Kotta ◽  
Maria Koutroumani ◽  
...  

Abstract Recent evidence indicates that TAp63, the prevalent isoform of TP63 in Chronic Lymphocytic Leukemia (CLL), is implicated in disease pathogenesis. In CLL, TAp63 expression, modulated by both immune signaling and epigenetic modifications, promotes leukemic cell survival and homing to the bone marrow. In activated normal B cells, the TAp63 transcription factor binds the BCL2 gene, participating in an anti-apoptotic pathway (axis NF-κB/TAp63/BCL2) augmenting cell survival. In this study, we investigated the expression of TAp63 in a large cohort of CLL cases and its potential fluctuation during disease progression. Additionally, in order to further understand the pro-survival role of TAp63 in CLL, we interrogated at the molecular level the interplay betweenΤAp63 and BCL2. Initially, using RT-qPCR we quantified TAp63 mRNA expression in 166 CLL patients, consisting of 89 with unmutated IGHV genes (U-CLL) and 77 with mutated IGHV genes (M-CLL), prior to administration of treatment. Significantly higher TAp63 mRNA levels were observed in U-CLL vs M-CLL (FD=13.83, p<0.0001). However, outliers were identified in both subgroups, prompting us to re-classify all cases into TAp63high and TAp63low subgroups using ROC curve and Youden index statistical procedures. TAp63high patients displayed significantly shorter time-to-first-treatment (TTFT) (TAp63highmedian TTFT: 1.58 years; TAp63lowmedian TTFT: 4.07 years; p=0.03) and shorter overall survival (OS) (TAp63highmedian OS: 7.825 years; TAp63lowmedian OS: not yet reached; p=0.046). Next, we analyzed TAp63 mRNA expression in longitudinal samples of 25 U-CLL cases treated with either FCR or rituximab-chlorambucil. In each case, samples were collected at three 'landmarks'; diagnosis, first progressionand first relapse. Expression analysis by RT-qPCR showed that TAp63 levels significantly increased at disease relapse compared to diagnosis (FD=3.47, p=0.02). We subsequently investigated links between TAp63 and BCL2 by measuring BCL2 mRNA levels in 56 U-CLL cases from the present cohort and found statistically significant correlation with the corresponding TAp63 mRNA levels (spearman rho=0.31, p=0.01). To validate this observation, we undertook functional studies in the MEC1 CLL cell line. Considering that MEC1 cells express high TAp63 mRNA levels, we generated a stable MEC1 cell line to inducibly downregulate TAp63, using CRISPR/dCas9-KRAB upon treatment with doxycycline (Dox). We used 2 different guide RNAs (sgRNAs; sgRNA1, sgRNA2) targeting 2 distinct regions of the endogenous TAp63 promoter. After 5 days of induction, the expression levels of both TAp63 and BCL2 were quantified by one step RT-qPCR in Tet-on-dCas9-KRAB-sgRNA-TAp63 MEC1 cells. Inducible downregulation of TAp63 expression (gRNA1: FD=1.7, gRNA2: FD=1.53) resulted in downregulation of BCL2 expression (gRNA1: FD=1.34, gRNA2: FD=1.12) with strong correlation (rho=0.97, p<0.0001) between TP63 and BCL2 mRNA levels. Furthermore, we also observed correlation between TAp63 and BCL2 protein expression in primary cells of one representative TP63high CLL case (rho=0.94, p=0.01), in which TAp63 was silenced by RNA interference (RNAi) with 3 different siRNAs. Prompted by these results, we additionally assessed ex vivo the effect of the BCL2 inhibitor Venetoclax in primary CLL cells of both TAp63high (n=8) and TAp63low (n=6) cases. Cell viability was measured by flow cytometry at 24 and 48 hours after treatment. TAp63high cases were more resistant to treatment with Venetoclax as they showed no statistically significant reduction in cell viability compared to the respective (DMSO-treated) controls, in contrast to TAp63low cases (24h: FD=3.63, p=0.004; 48h: FD=7.17, p=0.005). In conclusion, we provide evidence suggesting that up-regulated TAp63 expression represents a novel resistance mechanism to chemoimmunotherapy in CLL. The pro-survival role of TAp63 is supported by its strong association with BCL2. Indeed, based on the present findings, TAp63 appears to act as a positive modulator of BCL2 in CLL cells, rendering them less responsive to apoptosis induction with the BCL2 inhibitor Venetoclax. Disclosures Hadzidimitriou: Abbvie: Research Funding; Gilead: Research Funding; Janssen: Honoraria, Research Funding. Stamatopoulos:Abbvie: Honoraria, Research Funding; Gilead: Honoraria, Research Funding; Janssen: Honoraria, Research Funding.


Author(s):  
Sarah Wilmore ◽  
Karly-Rai Rogers-Broadway ◽  
Joe Taylor ◽  
Elizabeth Lemm ◽  
Rachel Fell ◽  
...  

AbstractSignaling via the B-cell receptor (BCR) is a key driver and therapeutic target in chronic lymphocytic leukemia (CLL). BCR stimulation of CLL cells induces expression of eIF4A, an initiation factor important for translation of multiple oncoproteins, and reduces expression of PDCD4, a natural inhibitor of eIF4A, suggesting that eIF4A may be a critical nexus controlling protein expression downstream of the BCR in these cells. We, therefore, investigated the effect of eIF4A inhibitors (eIF4Ai) on BCR-induced responses. We demonstrated that eIF4Ai (silvestrol and rocaglamide A) reduced anti-IgM-induced global mRNA translation in CLL cells and also inhibited accumulation of MYC and MCL1, key drivers of proliferation and survival, respectively, without effects on upstream signaling responses (ERK1/2 and AKT phosphorylation). Analysis of normal naïve and non-switched memory B cells, likely counterparts of the two main subsets of CLL, demonstrated that basal RNA translation was higher in memory B cells, but was similarly increased and susceptible to eIF4Ai-mediated inhibition in both. We probed the fate of MYC mRNA in eIF4Ai-treated CLL cells and found that eIF4Ai caused a profound accumulation of MYC mRNA in anti-IgM treated cells. This was mediated by MYC mRNA stabilization and was not observed for MCL1 mRNA. Following drug wash-out, MYC mRNA levels declined but without substantial MYC protein accumulation, indicating that stabilized MYC mRNA remained blocked from translation. In conclusion, BCR-induced regulation of eIF4A may be a critical signal-dependent nexus for therapeutic attack in CLL and other B-cell malignancies, especially those dependent on MYC and/or MCL1.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 873-873
Author(s):  
Maria Eugenia Riveiro ◽  
Lucile Astorgues-Xerri ◽  
Charlotte Canet-jourdan ◽  
Mohamed Bekradda ◽  
Esteban Cvitkovic ◽  
...  

Abstract Background: Exposure of cancer cells to BET-BRD protein inhibitors has been associated with a significant downregulation of C-MYC expression, leading to suppression of the transcriptional program linked to proliferation and survival. C-MYC mRNA expression, mediated by STAT5 activation, is induced by the JAK2 (V617F) mutation (JAK2mu) in transfected BA/F3 cells (Funakoshi-Tago, et al. 2013). We selected JAK2mu leukemia-derived cell lines for preclinical evaluation of OTX015 (Oncoethix, Switzerland), a selective orally-bioavailable inhibitor of BET-BRD proteins with promising early results in an ongoing phase I study in hematologic malignancies (Herait et al, AACR 2014, NCT01713582). Material and Methods: Antiproliferative effects of OTX015 and JQ1 were evaluated in three established JAK2mu human myeloid leukemia cell lines (SET2, MUTZ8, HEL 92.1.7). GI50 (OTX015 concentration inducing 50% growth inhibition) and Emax (% cell proliferation at 6 µM OTX015) values were determined by MTT assay after 72h exposure. Protein levels were analyzed by Western blot, and RT-PCR was performed with Fast SYBR Green Master Mix on a StepOnePlus Real-Time PCR System. For cell cycle analysis, cells were stained with propidium iodide and analyzed with a FACScan flow cytometer. Induction of apoptosis was evaluated by Annexin-V. Simultaneous schedules of OTX015 combined with ruxolitinib, a JAK2 inhibitor, were evaluated. Combination index (CI) was determined using the Chou & Talalay method; CI<1 reflects synergy, CI=1 additivity and CI>1 antagonism. Results: After 72h exposure, SET2 was the most sensitive cell line (GI50=0.12 µM and Emax=15%), and HEL92.1.7 cells had a GI50=1.9 µM with an Emax=23%. MUTZ8 was the most resistant cell line with an Emax=61%. Similar GI50 and Emax values are observed with JQ1. A significant increase in the fraction of apoptotic cells was observed in SET2 cells after 72h 500 nM OTX015 exposure. Non-significant increases in Annexin-positive cells were seen in HEL92.1.7 and MUTZ8 cells. Cell cycle analysis revealed a significant increase in the percentage of SET2 cells in subG0/G1 after 24, 48, and 72h 500 nM OTX015, correlating with the increase in apoptosis. Conversely, an increase in the percent cells in the G1 phase was observed in HEL 92.1.7 cells. After 4h 500 nM OTX015, BRD2 mRNA levels were significantly increased in all three cell lines, whereas BRD3 levels were not modified. BRD4 mRNA levels increased significantly after 48h in SET2 cells. OTX015 treatment induced a transitory reduction of C-MYC mRNA levels after 4h with an increase at 24h in all cell lines. At the protein level, C-MYC decreased substantially in SET2 cells after 4h, with complete disappearance after 48h without recovery, while in the less sensitive MUTZ8 cell line, the decrease in C-MYC protein levels was transitory. Conversely, this proto-oncogene was not modified in HEL92.1.7 cells. In addition, p-STAT5 protein was downregulated by OTX015 in SET2 cells, but was increased in MUTZ8 cells after longer exposure time. Furthermore, BCL2 mRNA and protein levels decreased in SET2 cells, correlating with the apoptosis induction seen with OTX015 treatment. In HEL92.1.7 cells, P21 mRNA levels and cyclin D1 protein levels increased after 4h and 48h OTX015 treatment, respectively. Moreover, concomitant combination of OTX015 with ruxolitinib showed a highly antagonist effect (CI>7) in SET2 cells, the most sensitive cell line to both agents. On the other hand, very strong synergy was observed in HEL92.1.7 (CI=0.19) and MUTZ8 (CI=0.41), despite their low sensitivity to single agent OTX015. Conclusions. Our findings demonstrate that OTX015 exhibits potent activity against cultured leukemic cells expressing the JAK2 V617F mutation, inducing apoptosis or cell cycle arrest at submicromolar concentrations. This activity correlates with modulation of C-MYC, p-STAT5, BCL2, P21 and cyclin D1 mRNA and protein levels following OTX015 treatment. Our study highlights the novel and synergistic activity of the combination of a BRD antagonist and a JAK inhibitor in human leukemic cells harboring the JAK2 V617 F mutation, supporting the rationale for in vivo testing of OTX015 in combination with JAK inhibitors in leukemic JAK2mu models. Disclosures Riveiro: Oncoethix SA: Research Funding. Astorgues-Xerri:Oncoethix SA: Research Funding. Canet-jourdan:Oncoethix SA: Research Funding. Bekradda:Oncoethix SA: Research Funding. Cvitkovic:Oncoethix SA: Membership on an entity's Board of Directors or advisory committees, Shareholder and CSO Other. Herait:Oncoethix SA: CMO and Shareholder Other. Raymond:Oncoethix SA: Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 248-248
Author(s):  
Alice Bonato ◽  
Riccardo Bomben ◽  
Supriya Chakraborty ◽  
Giulia Felician ◽  
Claudio Martines ◽  
...  

Abstract Inactivating mutations in NF-kB pathway genes, such as the NF-kB inhibitor NFKBIE, are among the more frequent genetic lesions in chronic lymphocytic leukemia (CLL). However, the role of these genetic lesions in CLL pathogenesis and treatment resistance is still largely unknown and requires further study in in vivo models of the disease. To this end, we generated transplantable murine leukemias with inactivating NFKBIE mutations and investigated their impact on leukemia growth and response to ibrutinib (IBR) treatment. The NFKBIE mutations were introduced by CRISPR/Cas9 editing in two recently established autoreactive leukemia lines derived from the Eμ-TCL1 murine CLL model. These cell lines proliferate spontaneously in vitro in a BCR-dependent manner, but also respond with increased proliferation to certain microenvironmental signals, such as those generated by Toll-like receptor (TLR) stimulation (Chakraborty S et al, Blood 2021). To investigate whether NFKBIE mutations can affect the proliferation of these cell lines in vitro, we performed competition experiments with mixed cultures of cells with wild type and mutated NFKBIE. Analysis of the clonal composition after 2 weeks showed no change in the mutant allele frequency (MAF), suggesting that NFKBIE mutations do not affect the spontaneous in vitro growth of the immortalized leukemia cells. However, repeated TLR or BCR stimulation of these cells with CpG-DNA, LPS, anti-IgM or autoantigen resulted in a 2-3 fold increase in MAF, suggesting that NFKBIE mutations provide a growth advantage when the cells are exposed to certain microenvironmental signals (n=3 experiments/condition, P&lt;0.05 for each condition). To investigate the impact of NFKBIE mutations on leukemia growth in vivo, the same cells were transplanted by intraperitoneal injection in wild type mouse recipients (n=8) and the clonal composition was determined 3 weeks later by MAF analysis of cells isolated from peritoneal cavity (PC), blood and spleen. A significant increase in MAF was observed only in leukemia cells isolated from the spleen (P&lt;0.05), suggesting that microenvironmental signals that positively select NFKBIE-mutated cells are available only in certain tissue compartments. Because mutations in other NF-kB pathway genes have been associated with resistance to IBR in mantle cell lymphoma, we next investigated whether NFKBIE mutations can also affect the response to IBR treatment. In vitro BrdU-incorporation experiments showed that IBR inhibits the proliferation of cells with mutated NFKBIE to a significantly lesser extent compared to cells with wild type NFKBIE (% proliferating cells with wild type and mutated NFKBIE, respectively, cultured without IBR: 90% vs 88%, P=n.s., with 0.2 μM IBR: 57% vs 73%, P&lt;0.001, with 1.0 μM IBR: 28% vs 53%, P&lt;0.001). Consistent with this finding, positive selection of NFKBIE-mutated cells was observed in the presence of IBR after 14 days in mixed culture competition experiments (mean MAF without IBR 47%, with 0.2 μM IBR 61%, p=0.032, with 1.0 μM IBR 64%, p=0.034). The greater resistance of NFKBIE-mutated cells to IBR was further validated by in vivo competition experiments showing a significantly greater increase in MAF in mice treated with IBR compared to controls in all three investigated compartments (n=4 mice/group, PC: P=0.029, blood P=0.029, spleen: P=0.001). To validate these findings in the clinical setting, we investigated the presence of NFKBIE mutations in a cohort of 84 IBR-treated CLL patients. Mutations of NFKBIE were detected at pre-treatment in 10/84 patients, 7/10 with &gt;10% VAF values. Kaplan Meier analysis showed a trend towards reduced progression-free and overall survival from the beginning of IBR treatment for NFKBIE-mutated cases (Figure 1A). Analysis of an extended cohort of over 200 cases is ongoing and will be presented at the meeting. Finally, to investigate whether leukemic cells with mutated NFKBIE remain sensitive to other BCR inhibitors, we tested their growth in the presence of the PI3K inhibitor idelalisib or SYK inhibitor fostamatinib (Figure 1B). In contrast to IBR, both drugs inhibited the proliferation of NFKBIE-mutated cells in vitro, with a greater effect observed with idelalisib. Collectively, these data demonstrate that NFKBIE mutations can reduce the response to IBR treatment and suggest that such cases may benefit more from treatment with a PI3K inhibitor. Figure 1 Figure 1. Disclosures Marasca: Janssen: Honoraria, Other: Travel grants; AstraZeneca: Honoraria; AbbVie: Honoraria, Other: Travel grants. Tafuri: Roche: Research Funding; Novartis: Research Funding; Celgene: Research Funding. Laurenti: Janssen: Consultancy, Honoraria; AstraZeneca: Consultancy, Honoraria; AbbVie: Consultancy, Honoraria, Research Funding; Roche: Honoraria, Research Funding; Gilead: Honoraria; BeiGene: Honoraria. Gattei: abbVie: Research Funding; Janssen: Research Funding; Menarini: Research Funding.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 944-944
Author(s):  
Filippo Vit ◽  
Francesca Maria Rossi ◽  
Tiziana D'Agaro ◽  
Tamara Bittolo ◽  
Antonella Zucchetto ◽  
...  

Abstract Background. The pivotal role of the Immunoglobulin (Ig) receptor and antigenic stimulation have been proven to be landmarks for the understanding of the ontogeny and evolution of chronic lymphocytic leukemia (CLL). In addition, the mutational status of the Immunoglobulin Heavy-Chain Variable region gene (IGHV) was confirmed to be a reliable prognostic factor, supporting an antigen-driven model of CLL development. To clarify aspects regarding an antigenic involvement in CLL evolution, studies focusing on intraclonal diversification (ID) of Ig genes have provided relevant information, although mainly conducted in a pre-Next Generation Sequencing (NGS) era. Aim. To apply a NGS approach to investigate ID in CLL. Methods. IGHV genes from 530 CLL patients with Royal Masden Hospital score 4-5 (Fig. 1A) was sequenced using NGS (Lymphotrack). The bio-informatic pipeline was based on the pRESTO/ChangeO packages. Specific pathological clones were selected based on the presence of same IGHV, junction genes and with similar HCDR3 sequence according to Hamming's distance. Through the R-Alakazam package, we generated rarefaction curves to evaluate the clonal diversity inside the pathological clone (Fig. 1B). Focusing on the Simpson index (represented by the Hill number of order q=2), which gives more weight to larger clones minimizing the smaller ones (Fig. 1B), we selected a Diversity Score (DS) of 4 for the definition of cases without ID (clonal; DS <4) and cases with ID (intraclonal; DS ≥4) (Fig. 1B). Results. Using the reported threshold we identified 469 (88.5%) clonal cases, expressing a single clone (Fig. 1C), and 61 (11.5%) cases with ID (median DS 9.2, range 4.4-66.0) characterized by the presence of two or multiple pathological clones expressing the same IGHV gene and HCDR3 (Fig. 1C). Notably, cases with ID expressed both a mutated (M) (39/61, 63.9%) and an unmutated (UM) (22/61, 36.1%; p=0.066) IGHV gene configuration (Fig. 1C). Of note, we observed a significant skewing toward the usage of VH4-family genes when comparing cases with ID (38/61, 62.3%) vs. cases without ID (78/469, 16.6%; p<0.0001, Fig 1D). Moreover, the IGHV4-39 and IGHV4-34 genes were the most used genes in the context of cases with ID (Fig. 1E), although none of them belonging to known stereotyped subsets. By focusing on VH4-family only cases, we observed that cases with ID and UM IGHV genes displayed higher mutation frequencies in WA/TW motifs, a mutational signature which suggests an involvement of both Activation-Induced (Cytidine) Deaminase (AID) and error-prone polymerase eta (Fig. 1F), a pattern not observed in its counterpart with UM IGHV genes but without ID (Fig. 1F). Conversely, in cases with ID and M IGHV genes, mutations preferentially clustered in AID hotspots (WRC/GYW motifs), suggesting a direct role of AID and the Base Excision Repair machinery in the mutational overload (Fig. 1F). Consistently, M IGHV cases with ID expressed significantly higher AID mRNA levels than M IGHV cases without ID (p=0.0024; Fig. 1G). These expression levels were overall comparable with those found in UM IGHV cases, irrespective to the evidence of ID (Fig. 1G), which however were not associated with an increased number of mutations in AID-specific hotspots (Fig. 1F). Conclusions. By taking advantage of a new method for ID assessment in CLL, we demonstrated that ID prevalently affects VH4-family cases which display different mutational patterns dependent to the IGHV gene status. This data are in keeping with previous reports indicating the IGHV4 genes as particularly prone to generate immunoglobulin subjected to continuous/persistent stimulation by external/auto-antigens, hence particularly prone to generate features of ID. Further experiments in selected cases with ID through a non-random barcode strategy are needed. Disclosures Zaja: Sandoz: Honoraria; Celgene: Honoraria, Research Funding; Novartis: Honoraria, Research Funding; Amgen: Honoraria; Janssen: Honoraria; Takeda: Honoraria; Abbvie: Honoraria.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2787-2787
Author(s):  
Stefan Nagel ◽  
Letizia Venturini ◽  
Corinna Meyer ◽  
Hans G. Drexler ◽  
Roderick A.F. MacLeod ◽  
...  

Abstract Homeobox genes of the NK-like familiy, including TLX1, TLX3 and NKX2-5, are ectopically activated in T-cell acute lymphoblastic leukemia (T-ALL) cells mostly via chromosomal aberrations. The pathologic function of these closely related genes is still unclear. Here we analyzed their effect on the C13ORF25 gene, containing the miR-17-92 cluster. Micro RNAs (miRNAs) are a class of small non-coding RNAs which are part of an evolutionarily highly conserved intracellular mechanism, regulating gene expression by hybridization to complementary sequences usually located in the 3′untranslated region of coding transcripts. The primary transcripts (pri-mRNA) are processed to short mature miRNAs, mediating either inhibition of mRNA translation or mRNA cleavage. Aberrant expression of specific miRNAs is involved in oncogenesis as recently described for several human malignancies. The miR-17-92 polycistron encodes miRNAs which decrease E2F1 protein expression. Transcription of both E2F1 and miR-17-92 is induced by MYC, itself a target of E2F1, generating a highly regulated interactive network. Depending on the cellular context, E2F1 performs conflicting tasks by triggering proliferation or inducing apoptosis. We investigated the expression of the miR-17-92 cluster in T-ALL cell lines. Real-time RT-PCR analysis of both miR-17-92 pri-mRNA and mature miRNAs revealed different expression levels in these cells, suggesting a possible implication of the NK-like homeodomain proteins in the regulation of the miR-17-92 cluster in T-ALL. HELA cells transfected with TLX1 or NKX2-5 expression constructs showed elevated miR-17-92 pri-mRNA expression, demonstrating an activating effect. Lentiviral-mediated overexpression of NKX2-5 in the T-ALL cell line MOLT-4 consistently showed increased miR-17-92 pri-mRNA levels and decreased E2F1 protein amounts. For functional analysis of these downstream targets, another T-ALL cell line (PEER) was lentivirally transduced with expression constructs for either miR-17-92 or E2F1, resulting in reduced or elevated E2F1 protein levels, respectively. Overexpression of miR-17-92 or E2F1 did not significantly influenced the cell proliferation. However, induction of apoptosis by treating these cells with etoposide, an inhibitor of topoisomerase II, indicated that overexpression of miR-17-92 and E2F1 resulted in enhanced and reduced cell viability, respectively, as analyzed by MTT assay. In summary, these data indicate an activatory effect of oncogenic NK-like homeodomain proteins on miR-17-92 expression, reducing E2F1 protein levels and thereby enhancing survival of leukemic T-cells.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 4-4
Author(s):  
Miguel Quijada Álamo ◽  
Maria Hernandez-Sanchez ◽  
Ana E. Rodriguez ◽  
Claudia Pérez Carretero ◽  
Marta Martín Izquierdo ◽  
...  

Chronic lymphocytic leukemia (CLL) patients harboring 11q22.3 deletion, del(11q), are characterized by a rapid disease progression. One of the suggested genes to be involved in the pathogenesis of this deletion is BIRC3, a negative regulator of NF-κB, which is monoallelically deleted in ~80% of del(11q) CLL cases. In addition, truncating mutations in the remaining allele of this gene can lead to BIRC3 biallelic inactivation, which accounts for marked reduced survival in CLL. Nevertheless, the biological mechanisms by which monoallelic or biallelic BIRC3 lesions could contribute to del(11q) CLL pathogenesis, progression and therapy response are partially unexplored. We used the CRISPR/Cas9 system to model monoallelic and biallelic BIRC3 loss in vitro. First, we generated an isogenic HG3 CLL cell line harboring monoallelic del(11q) - HG3-del(11q) - by the introduction of 2 guide RNAs targeting 11q22.1 and 11q23.3 (~17 Mb). Loss-of-function BIRC3 mutations (MUT) were introduced in the remaining allele, generating 3 HG3-del(11q) BIRC3MUT clones. In addition, single BIRC3MUT were introduced in HG3 and MEC1 CLL-derived cells for experimental validation (n = 3 clones/cell line). We first questioned whether monoallelic and biallelic BIRC3 loss had an impact in the DNA-binding activity of NF-κB transcription factors. Interestingly, HG3-del(11q) had higher p52 and RelB (non-canonical NF-κB signaling) activity than HG3WT cells (P = 0.005; P = 0.007), being this activity further increased in HG3-del(11q) BIRC3MUT cells (P &lt; 0.001; P &lt; 0.001). In depth analysis of the non-canonical signaling components by immunoblot revealed that HG3-del(11q) and, to a greater extent, HG3-del(11q) BIRC3MUT cells presented NF-κB-inducing kinase (NIK) cytoplasmic stabilization, high p-IKKα levels and p52-RelB nuclear translocation. Besides, HG3-del(11q) BIRC3MUT cells showed increased levels of the anti-apoptotic proteins BCL2 and BCL-xL. We next assessed this pathway ex vivo in stroma and CpG-stimulated primary CLL cells with or without BIRC3 deletion (n = 22; 11 each group). Remarkably, stimulated BIRC3-deleted primary cells showed higher p52 and RelB activity than BIRC3WT cases (P = 0.01; P = 0.07), and the percentage of BIRC3-deleted cells correlated with p52 activity in del(11q) cases (P = 0.04). We further performed western blot analyses in a homogenous cohort of del(11q) cases including (n = 4) or not including (n = 3) BIRC3 within the deleted region. Interestingly, del(11q)/BIRC3 deleted cases presented high levels of stabilized NIK, which correlated with higher p52 processing (P = 0.003). These patients also showed higher BCL2 levels than those del(11q)/BIRC3 undeleted, and we could further observe a correlation between p52 and BCL2 levels (P = 0.01). Given this p52-dependent BCL2 upregulation, we treated the CRISPR/Cas9 edited clones with venetoclax, demonstrating that HG3-del(11q) BIRC3MUT cells were more sensitive upon BCL2 inhibition than HG3WT clones (mean IC50 3.5 vs. 5.75 μM; P = 0.005). In vitro proliferation assays were performed to interrogate the impact of BIRC3 loss in CLL cell growth, revealing that HG3 BIRC3MUT cell lines had higher growth rates than BIRC3WT cells (P = 0.001). HG3-del(11q) BIRC3MUT cells also showed enhanced proliferation in comparison to HG3-del(11q) clones (P = 0.009). We further determined the clonal dynamics of del(11q) and/or BIRC3MUT cell lines in clonal competition experiments, showing that HG3 BIRC3MUT and HG3-del(11q) BIRC3MUT cells progressively outgrew HG3WT and HG3-del(11q) cells, respectively, overtime (P = 0.02; P = 0.006). Furthermore, we injected these edited cell lines into NSG mice (n = 20) in vivo, showing that mice xenografted with HG3 BIRC3MUT and HG3-del(11q) BIRC3MUT cells presented, by flow cytometry, an increase of human CD45+ cells in spleen 14 days after injection, compared to HG3WT and HG3-del(11q) cells (P = 0.02; P = 0.015). In summary, this work demonstrates that biallelic BIRC3 deletion through del(11q) and mutation triggers non-canonical NF-κB signaling, driving BCL2 overexpression and conferring clonal advantage, which could account for the negative predictive impact of BIRC3 biallelic inactivation in CLL. Taken together, our results suggest that del(11q) CLL patients harboring BIRC3 mutations should be considered as a CLL subgroup at a high risk of progression that might benefit from venetoclax-based therapies. Funding: PI18/01500 Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1832-1832
Author(s):  
Francesca Arruga ◽  
Valeria Bracciamà ◽  
Alison Yeomans ◽  
Annalisa D'Avola ◽  
Marta Coscia ◽  
...  

Abstract BACKGROUND. Mutations in NOTCH1 PEST domain (NOTCH1-M) are present in ~10% of Chronic Lymphocytic Leukemia (CLL) patients, result in accumulation of more stable NOTCH1 protein, and associate with poorer prognosis. NOTCH1-M are enriched in unmutated (U) immunoglobulin gene heavy-chain variable region (IGHV) CLL, which show high surface IgM (sIgM) expression and signaling capacity. mRNA translation is a prominent response to B cell receptor (BCR) engagement, increased in U-CLL, and for which therapeutic inhibitors are under active development. In CLL, c-MYC is an essential mediator of BCR-driven translation and direct target of NOTCH1, suggesting the impact of NOTCH1 on anti-IgM-mediated cell growth via MYC. AIMS AND METHODS. Our aim was to investigate the functional role of NOTCH1-M on anti-IgM-mediated signaling, compared to wild-type (WT) NOTCH1. The impact on global mRNA translation was studied using a flow cytometry-based O-propargyl-puromycin (OPP) incorporation assay and polysome fractionation assays. The effects of stabilized vs WT NOTCH1 were measured after 24-hour cultures of CLL cells, when data demonstrate differences in the expression of the two forms. Two cohorts of U-CLLs were compared: i) a subset of samples carrying NOTCH1-M [variant allele frequency (VAF) ≥30%, n=21] and ii) a cohort of samples with WT NOTCH1 (VAF<1%, n=23). In both subsets no additional cytogenetic lesions other than 13q deletion were present. RESULTS. sIgM levels and signaling capacity (measured by anti-IgM mediated iCa2+ mobilization) were higher in NOTCH1-M than in -WT samples, consistent with previous observations (1). Conceivably, anti-IgM-mediated phosphorylation of PLCg2 and ERK1/2 was stronger in M than in WT CLLs. In keeping with these results, expression of downstream targets as MYC and CCL3 was also induced at higher levels in M samples. Interestingly, inhibition of NOTCH1 with g-secretase inhibitor (DAPT) significantly decreased BCR target genes induction in M cells, reducing the differences with WT samples, and further enhanced the effects of ibrutinib when used in combination. In order to investigate the impact of NOTCH1 on IgM-mediated CLL cell growth, anti-IgM-induced global mRNA translation was compared in the two cohorts. Consistent with the higher MYC mRNA and protein levels, anti-IgM led to higher global mRNA translation in NOTCH1-M than in -WT cells. DAPT inhibited it in both CLL subsets, while ibrutinib led to complete inhibition of mRNA translation only in the -WT subset, suggesting a major contribution of NOTCH1 to the process. Consistently, the combination of DAPT+ibrutinib abrogated the difference between M and WT CLL cells. Importantly, MYC (but not translation initiation factors eIF4G, eIF4A or eIF3b) was already induced at 6 hours following anti-IgM stimulation and was maintained at high levels at 24 hours, while up-regulation of eIF4G, eIF4A and eIF3b was evident only at 24 hours, supporting the hypothesis of a direct MYC-dependent regulation of the translation machinery (2). NOTCH1 itself was post-transcriptionally regulated upon BCR ligation, as we observed increased NOTCH1 mRNA in polysome-enriched actively translated fractions and increased protein levels on the surface of anti-IgM stimulated cells, specifically inhibited by ibrutinib. Consequently, NOTCH1 pathway was significantly more activated upon anti-IgM stimulation in M than WT cells, as determined by qPCR of NOTCH1 target genes. Both Ibrutinib and DAPT significantly prevented NOTCH1 activation upon BCR triggering, with the drug combination being the most effective treatment. Moreover, in line with data showing NOTCH1-dependent regulation of a B cell gene signature, expression of BTK, LYN and BLNK was significantly increased in anti-IgM activated NOTCH1-M samples, an effect prevented by DAPT. CONCLUSIONS. These data indicate that NOTCH1 stabilization associates with stronger IgM signaling capacity and suggest an interplay between BCR and NOTCH1 pathway, with the former promoting NOTCH1 expression and activation. The evidence that NOTCH1 pathway inhibition reverts this difference suggests a direct effect of NOTCH1 on IgM signaling. In this scenario, stabilizing NOTCH1 mutations may enhance BCR signaling by boosting translation through MYC induction and by directly regulating expression of BCR cascade elements. NOTES. SD and FF share senior authorshipD'Avola, Blood 2016Ruggero, Cancer Res 2009 Disclosures Coscia: Abbvie, Gilead, Shire: Honoraria, Membership on an entity's Board of Directors or advisory committees; Janssen, Karyopharm: Research Funding. Gaidano:Janssen: Consultancy, Honoraria; AbbVie: Consultancy, Honoraria; Morphosys: Honoraria; Amgen: Consultancy, Honoraria; Gilead: Consultancy, Honoraria; Roche: Consultancy, Honoraria. Allan:Genentech: Membership on an entity's Board of Directors or advisory committees; AbbVie: Membership on an entity's Board of Directors or advisory committees; Sunesis: Membership on an entity's Board of Directors or advisory committees; Acerta: Consultancy; Verastem: Membership on an entity's Board of Directors or advisory committees. Furman:Gilead: Consultancy; AbbVie: Consultancy; Verastem: Consultancy; Janssen: Consultancy; Genentech: Consultancy; Incyte: Consultancy, Other: DSMB; Loxo Oncology: Consultancy; TG Therapeutics: Consultancy; Sunesis: Consultancy; Acerta: Consultancy, Research Funding; Pharmacyclics LLC, an AbbVie Company: Consultancy. Packham:Aquinox: Research Funding. Deaglio:iTeos therapeutics: Research Funding; VelosBio inc: Research Funding; Verastem: Research Funding. Forconi:Abbvie: Consultancy; Janssen-Cilag: Consultancy.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3019-3019
Author(s):  
Marina Gerousi ◽  
Fotis Psomopoulos ◽  
Kostantia Kotta ◽  
Niki Stavroyianni ◽  
Achilles Anagnostopoulos ◽  
...  

Calcitriol, the biologically active form of vitamin D, modulates a plethora of cellular processes following its receptor ligation, namely the vitamin D receptor (VDR), a nuclear transcription factor that regulates the transcription of diverse genes. It has been proposed that vitamin D may play a role in prevention and treatment of cancer while epidemiological studies have linked vitamin D insufficiency to adverse disease outcome in chronic lymphocytic leukemia (CLL). Recently, we reported that VDR is functional in CLL cells after calcitriol supplementation, as well as after stimulation through both the calcitriol/VDR signaling system and other prosurvival pathways triggered from the tumor microenvironment. In this study, we aimed at investigating key molecules and signaling pathways that are altered after calcitriol treatment and are known to play a relevant role in CLL pathophysiology. CD19+ primary CLL cells were negatively selected from peripheral blood samples of patients that were treatment naïve at the time of sample collection. CLL cells were cultured in vitro with calcitriol or co-cultured with the HS-5 mesenchymal cell line for 24 hours. VDR+, CYP24A1+, phospho-ERK+ and phospho-NF-κB p65+ cells were determined by Flow Cytometry (FC). Total RNA was extracted from calcitriol-treated and non-treated CLL cells, while mRNA selection was performed using NEBNext Poly(A) mRNA Magnetic Isolation Module. Library preparation for RNA-Sequencing (RNA-Seq) analysis was conducted with the NEBNext Ultra II Directional RNA Library Prep Kit. The libraries were paired-end sequenced on the NextSeq 500 Illumina platform. Differential expression analysis was performed using DESeq2; genes with log2FC>|1| and P≤0.05 were considered as differentially expressed. RNA-Seq analysis (n=6) confirmed our previous findings that the CYP24A1 gene is significantly upregulated by calcitriol, being the top upregulated gene, whereas the VDR gene remains unaffected by this treatment. Overall, 85 genes were differentially expressed in unstimulated versus calcitriol-treated cells, of which 28 were overexpressed in the latter thus contrasting the remaining 57 which showed the opposite pattern. Pathway enrichment and gene ontology (GO) analysis of the differentially expressed genes revealed significant enrichment in PI3K-Akt pathway and Toll-like receptor cascades, as well as in vitamin D metabolism and inflammatory response pathways. Additionally, flow cytometric analysis showed that calcitriol-treated CLL cells displayed increased pERKlevels (FD=1.3, p<0.05) and, in contrast decreased pNF-κBlevels (FD=2.7, p<0.05), highlighting active VDR signaling in CLL. Aiming at placing our findings in a more physiological context, we co-cultured CLL cells with the HS-5 cell line. Based on our previous finding that co-cultured CLL cells showed induced CYP24A1 levels, we evaluated pNF-κB expression. pNF-κB levels were found to be increased in co-cultured CLL cells (FD=4.2, p<0.05), while the addition of calcitriol downregulated pNF-κB (FD=1.5, p<0.05). Moreover, ex vivo calcitriol exposure of CLL cells from patients under ibrutinib treatment (at baseline, +1 and +3-6 months, n=7) resulted in significant upregulation of pERK (FD=1.6, p<0.01; FD=1.4, p<0.01; FD=1.9, p<0.01; for each timepoint respectively) but, significant downregulation of pNF-κΒ (FD=3.4, p<0.01; FD=3, p<0.05; FD=2.3, p<0.05; for each timepoint respectively), indicating preserved calcitriol/VDR signaling capacity. In conclusion, we provide evidence that the calcitriol/VDR system is active in CLL, modulating NF-κB and MAPK signaling as well as the expression of the CYP24A1 target gene. This observation is further supported by RNA-Seq analysis that confirms CYP24A1 upregulation and highlights new signaling pathways that need to be validated. Interestingly, the calcitriol/VDR system appears relatively unaffected by either stimulation or inhibition (ibrutinib) of microenvironmental signals that promote CLL cell survival and/or proliferation, indicating context-independent signaling capacity. Disclosures Kotsianidis: Celgene: Research Funding. Stamatopoulos:Janssen: Honoraria, Research Funding; Abbvie: Honoraria, Research Funding.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4626-4626
Author(s):  
Ju-Yoon Yoon ◽  
David Szwajcer ◽  
Ganchimeg Ishdorj ◽  
Pat Benjaminson ◽  
Spencer B Gibson ◽  
...  

Abstract Abstract 4626 Valproic acid (VPA) is a first-generation anti-epileptic drug that has been shown to inhibit proliferation and induce apoptosis in various hematological malignancies, including multiple myeloma and chronic lymphocytic leukemia (CLL). VPA-induced apoptosis is thought to be due to its ability to inhibit histone deacetylases (HDACs), resulting in hyper-acetylation of histones and altered expression levels of pro- and anti-apoptotic genes. We show here that the mechanism of VPA-induced apoptosis in CLL is associated with activation of the TNF-related apoptosis-inducing ligand (TRAIL) apoptotic pathway in vitro and ex vivo. TRAIL induces cell death by binding to death receptors 4 and 5 (DR4, DR5), which in turn activate the extrinsic apoptotic pathway. We have previously shown that 30–40% of the activities of fludarabine and chlorambucil are mediated through the TRAIL pathway, and this is related to up-regulation of the expressions of DR4 and DR5. We confirm here that VPA induces apoptosis in two CLL-like cell lines, I-83 and BJAB. Co-treatment of the two cell lines with VPA and activating antibodies against either DR4 (ETR1) or DR5 (ETR2) enhanced VPA-induced apoptosis in both cell lines after 24 hours. Conversely, blocking the TRAIL apoptotic pathway with DR4:FC fusion protein decreased the cytotoxicity of VPA, as well as another HDAC inhibitor, trichostatin A, in BJAB cells. These results confirmed the importance of activation of the TRAIL apoptotic pathway for the antitumor activity of VPA. Treatment with VPA also induced formation of reactive oxygen species (ROS) and enhanced fludarabine-induced apoptosis in cell lines and primary CLL cells. Having shown the effects of VPA in vitro, a phase II clinical trial was initiated at CancerCare Manitoba to determine the activity of VPA in CLL, either when used alone or in combination with fludarabine. Five patients who had received at least one prior therapy with fludarabine have to date been examined. Three out of 5 patients were fludarabine-resistant, as defined as no response to fludarabine or relapse < 6-months after completion of treatment with fludarabine. Patients received VPA at a starting dose of 15 mg/kg/day orally in divided doses, with the goal of reaching a serum level of >1 mM. Various side effects were observed with higher doses of VPA, including anaemia, thrombocytopaenia, GI toxicity and fatigue. No responses were seen after 28 days using VPA alone. However, in four patients who continued on VPA with fludarabine, 3 patients showed a >50% fall in lymphocyte/lymph node size after receiving 5 cycles of the combination. Peripheral blood samples were obtained prior to each treatment cycle, and mononuclear cells were isolated for analysis by immunoblotting and immunocytochemistry. Levels of both histone 3-acetyl and histone 4-acetyl initially increased and then fluctuated during the course of treatment. When DR4 and DR5 levels were examined by immunoblotting, DR4 levels increased during the course of therapy, while no significant changes in DR5 levels were observed. Expression of mRNA levels of genes involved in apoptosis was examined in one patient before and 28 days following VPA. There was a global up-regulation of both pro- and anti-apoptotic genes (as categorized by their gene ontology) which likely explains the effect of VPA on fludarabine sensitivity in CLL. In summary, VPA induces hyper-acetylation of histones in CLL and activates the TRAIL apoptotic pathway through upregulation of DR4 levels. While VPA is ineffective as a single agent in CLL, it can sensitize CLL cells to fludarabine and could be used as an adjuvant in fludarabine-based treatment regimens. Ongoing studies are evaluating the effectiveness of lower and less toxic doses of VPA in combination with fludarabine in CLL. Disclosures: Off Label Use: Valproic acid (VPA). VPA is being tested as a possible adjunct in treating chronic lymphocytic leukemia.


Sign in / Sign up

Export Citation Format

Share Document