scholarly journals The Mystery of "Magic Blood" - Familial Macrothrombocytopenia Associated with a Novel Variant in GP1BA Gene

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2380-2380
Author(s):  
Zhaohui Liao Arter ◽  
Caitlin Yatogo ◽  
Michael C. Chicka ◽  
Jeffrey L. Berenberg

Introduction: Inherited macrothrombocytopenias comprise a heterogeneous group of rare inherited disorders characterized by decreased platelet count with enlarged platelet size. Glycoprotein Ib (GP Ib) is a platelet surface membrane glycoprotein that is encoded by GP1BA gene, and functions as a receptor for von Willebrand factor (VWF). Mutations in the GP1BA gene are seen in Bernard-Soulier syndrome (BSS). Here we describe a family with an isolated giant platelet disorder and a novel variant in the GP1BA gene following an autosomal dominant mode of inheritance. In our kindred this variant was not associated with clinical history or specific laboratory evidence of BSS. Case Presentation: 34-year-old female reported first being diagnosed with macrothrombocytopenia at the age of 13 on routine blood work. The patient and 11 of her relatives spanning 5 generations have reported asymptomatic macrothrombocytopenia (Figure 1), described as "Magic Blood" by her family. Her platelet count fell below 20,000/microL during one of her pregnancies. She was treated as idiopathic thrombocytopenic purpura (ITP) and was given corticosteroids to increase platelet count without improvement. On presentation, patient's complete blood count was significant for low platelet at 55,000/microL and macrothrombocytes were observed on blood smear. Methods/Results: VWF assays, including Factor VIII activity, VWF Ag, and Ristocetin Cofactor, were within normal limits. VWF multimer analysis revealed a normal pattern and distribution of bands. Patient had a normal platelet aggregation in response to ADP, Collagen, Epinephrine, Ristocetin and Arachidonate. Flow Cytometry detected normal GP Ib and GP IIb/ IIIa expression. Whole exome sequencing and copy number analysis of 29 genes associated with thrombocytopenia revealed a c.97T>G substitution in the GP1BA gene predicted to result in the amino acid substitution p.Cys33Gly (Figure 2). To our knowledge, this variant has not been reported in the literature or public databases. To confirm this novel variant is the cause of the familiar macrothrombocytopenia, two relatives with macrothrombocytopenia, a maternal uncle and a first cousin, also underwent genetic testing and were found to have the same variant. Discussion: Variants in GP1BA are associated with both autosomal dominant and recessive forms of BSS and with autosomal dominant platelet-type VWD. Our kindred is surprisingly asymptomatic given the location and specific amino acid substitution generated by the variant. Amino acid residue p.Cys33 resides in an extracellular N-terminal domain that is critical for VWF binding and proper assembly of the GP1B-IX complex. A heterozygous substitution involving the same amino acid residue defined as p.Cys33Arg was observed in two patients with macrothrombocytopenia with no reported bleeding complications (MC, unpublished data). Substitution of a nearby cysteine residue defined as p.Cys20Gly has been reported in a case of monoallelic chronic macrothrombocytopenia without bleeding diathesis similar to our patient. Amino acid residues p.Cys20 and p.Cyc33 are highly conserved among divergent species and substitution of these amino acid residues appears to not be tolerated. Substitution of other cysteine amino acid residues in the extracellular domain of the GP1BA protein (p.Cys81 and p.Cys225) has also been reported in patients with biallelic BSS, suggesting that perturbation of cysteine amino acid residues is likely to affect protein structure and function. Conclusion:We think the p.Cys33Gly substitution found in our patient and her relatives is likely to be a primary cause of monoallelic GP1BA-associated macrothrombocytopenia. It is important to distinguish inherited macrothrombocytopenia from ITP in order to avoid unnecessary and potentially toxic treatment. Disclosures No relevant conflicts of interest to declare.

RSC Advances ◽  
2021 ◽  
Vol 11 (35) ◽  
pp. 21629-21641
Author(s):  
Chao Xia ◽  
Pingping Wen ◽  
Yaming Yuan ◽  
Xiaofan Yu ◽  
Yijing Chen ◽  
...  

The relative number of peptides modified by the amino acid residues of actin from raw beef patties and those cooked at different roasting temperatures.


2007 ◽  
Vol 2007 ◽  
pp. 1-23 ◽  
Author(s):  
G. R. Hemalatha ◽  
D. Satyanarayana Rao ◽  
L. Guruprasad

We have identified four repeats and ten domains that are novel in proteins encoded by theBacillus anthracisstr.Amesproteome using automated in silico methods. A “repeat” corresponds to a region comprising less than 55-amino-acid residues that occur more than once in the protein sequence and sometimes present in tandem. A “domain” corresponds to a conserved region with greater than 55-amino-acid residues and may be present as single or multiple copies in the protein sequence. These correspond to (1) 57-amino-acid-residue PxV domain, (2) 122-amino-acid-residue FxF domain, (3) 111-amino-acid-residue YEFF domain, (4) 109-amino-acid-residue IMxxH domain, (5) 103-amino-acid-residue VxxT domain, (6) 84-amino-acid-residue ExW domain, (7) 104-amino-acid-residue NTGFIG domain, (8) 36-amino-acid-residue NxGK repeat, (9) 95-amino-acid-residue VYV domain, (10) 75-amino-acid-residue KEWE domain, (11) 59-amino-acid-residue AFL domain, (12) 53-amino-acid-residue RIDVK repeat, (13) (a) 41-amino-acid-residue AGQF repeat and (b) 42-amino-acid-residue GSAL repeat. A repeat or domain type is characterized by specific conserved sequence motifs. We discuss the presence of these repeats and domains in proteins from other genomes and their probable secondary structure.


Synthesis ◽  
2019 ◽  
Vol 51 (05) ◽  
pp. 1273-1283 ◽  
Author(s):  
Simon Baldauf ◽  
Jeffrey Bode

The α-ketoacid–hydroxylamine (KAHA) ligation allows the coupling of unprotected peptide segments. The most widely used variant employs a 5-membered cyclic hydroxylamine that forms a homoserine ester as the primary ligation product. While very effective, monomers that give canonical amino acid residues are in high demand. In order to preserve the stability and reactivity of cyclic hydroxylamines, but form a canonical amino acid residue upon ligation, we sought to prepare cyclic derivatives of serine hydroxylamine. An evaluation of several cyclization strategies led to cyclobutanone ketals as the leading structures. The preparation, stability, and amide-forming ligation of these serine-derived ketals are described.


1997 ◽  
Vol 323 (2) ◽  
pp. 415-419 ◽  
Author(s):  
Lakshmi KASTURI ◽  
Hegang CHEN ◽  
Susan H. SHAKIN-ESHLEMAN

N-linked glycosylation can profoundly affect protein expression and function. N-linked glycosylation usually occurs at the sequon Asn-Xaa-Ser/Thr, where Xaa is any amino acid residue except Pro. However, many Asn-Xaa-Ser/Thr sequons are glycosylated inefficiently or not at all for reasons that are poorly understood. We have used a site-directed mutagenesis approach to examine how the Xaa and hydroxy (Ser/Thr) amino acid residues in sequons influence core-glycosylation efficiency. We recently demonstrated that certain Xaa amino acids inhibit core glycosylation of the sequon, Asn37-Xaa-Ser, in rabies virus glycoprotein (RGP). Here we examine the impact of different Xaa residues on core-glycosylation efficiency when the Ser residue in this sequon is replaced with Thr. The core-glycosylation efficiencies of RGP variants with different Asn37-Xaa-Ser/Thr sequons were compared by using a cell-free translation/glycosylation system. Using this approach we confirm that four Asn-Xaa-Ser sequons are poor oligosaccharide acceptors: Asn-Trp-Ser, Asn-Asp-Ser, Asn-Glu-Ser and Asn-Leu-Ser. In contrast, Asn-Xaa-Thr sequons are efficiently glycosylated, even when Xaa = Trp, Asp, Glu or Leu. A comparison of the glycosylation status of Asn-Xaa-Ser and Asn-Xaa-Thr sequons in other glycoproteins confirms that sequons with Xaa = Trp, Asp, Glu or Leu are rarely glycosylated when Ser is the hydroxy amino acid residue, and that these sequons are unlikely to serve as glycosylation sites when introduced into proteins by site-directed mutagenesis.


1997 ◽  
Vol 325 (3) ◽  
pp. 587-591 ◽  
Author(s):  
Hidetomo IWANO ◽  
Hiroshi YOKOTA ◽  
Satoru OHGIYA ◽  
Naomi YOTUMOTO ◽  
Akira YUASA

An amino acid residue, Asp446, was found to be essential for the enzymic activity of UDP-glucuronosyltransferase (UGT). We obtained a rat phenol UGT (UGT1*06) cDNA (named Ysh) from male rat liver by reverse-transcription (RT)-PCR using pfu polymerase. A mutant Ysh having two different bases, A1337G and G1384A (named Ysh A1337GC1384A), that result in two amino acid substitutions, D446G and V462M, was obtained by RT-PCR using Taq polymerase. Ysh was expressed functionally in microsomes of Saccharomyces cerevisiae strain AH22. However, the expressed protein from Ysh A1337GG1384A had no transferase activity. Two other mutant cDNAs with Ysh A1337G having one changed base, A1337G, resulting in one amino acid substitution, D446G, and Ysh G1384A having a changed base, G1384A, resulting in an amino acid substitution, V462M, were constructed and expressed in the yeast. The expressed protein from Ysh G1384A (named Ysh V462M) exhibited enzymic activity, but the one from Ysh A1337G (named Ysh D446G) did not show any activity at all. Asp446 was conserved in all UGTs and UDP-galactose:ceramide galactosyltransferases reported, suggesting that Asp446 plays a critical role in each enzyme.


2011 ◽  
Vol 359 (1-2) ◽  
pp. 271-281 ◽  
Author(s):  
Helen Coe ◽  
Jeannine D. Schneider ◽  
Monika Dabrowska ◽  
Jody Groenendyk ◽  
Joanna Jung ◽  
...  

Blood ◽  
1973 ◽  
Vol 42 (5) ◽  
pp. 771-781 ◽  
Author(s):  
Paul R. Pedersen ◽  
Paul R. McCurdy ◽  
R. N. Wrightstone ◽  
J. B. Wilson ◽  
L. L. Smith ◽  
...  

Abstract A 17-yr-old black male with hemolysis and pigmenturia but no anemia was found to have hemoglobin Köln (α2β298 val→met [FG5]). Splenectomy was done because of complicating thrombocytopenia. Thrombokinetic studies with 51Cr tagged platelets suggested hypersplenism, and after surgery the platelet count returned to normal. The red cell t ½ 51Cr was more than doubled, but the red cell life span (DF32P) was more modestly improved (30.6 → 47.2 days). The "elution" of 51Cr from the red cells presplenectomy was 5.6%/day, whereas after surgery it was normal (1.9%/day), accounting for the disparity between the survival methods. Study of the isolated cyanferri derivative of hemoglobin Köln by ultracentrifugation at various salt concentrations and various pH’s indicated an increased tendency to dimer formation under conditions where normal hemoglobin is a tetramer. This results from the site and type of amino acid substitution and accounts in part for its instability.


1991 ◽  
Vol 173 (3) ◽  
pp. 665-672 ◽  
Author(s):  
S Fish ◽  
M Fleming ◽  
J Sharon ◽  
T Manser

Antibody variable (V) regions that initially differ from one another by only single amino acid residues at VH-D and D-JH segment junctions (termed canonical V regions) can be elicited in strain A/J mice by three different haptens. Among such V regions an amino acid substitution due to somatic mutation is recurrently observed at VH CDR2 position 58, regardless of which of these haptens is used for immunization. This substitution confers upon a canonical V region a generic increase in affinity for all the haptens. Conversely, the type of amino acid substitution at VH position 59 resulting from somatic mutation that is recurrently observed among such V regions changes with the eliciting hapten, in a manner that correlates directly with the cognate affinity increases (or decreases) for hapten conferred by the observed substitutions. This small subregion of VH CDR2 therefore plays a major role in determining both affinity and specificity for antigen. The data confirm that affinity for antigen is of pivotal importance in determining the degree of selection of different mutant forms of a V region. Moreover, during an immune response a sufficiently diverse mutant repertoire can be generated from a single canonical V region to allow adaptation to increase affinity for three different epitopes.


Sign in / Sign up

Export Citation Format

Share Document