scholarly journals Systems-Level Analysis of the Immune Repertoire in Neutropenia Reveal Arrested NK Cell Differentiation and Exhaustion

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 24-25
Author(s):  
Ebba Sohlberg ◽  
Aline Pfefferle ◽  
Eivind Heggernes Ask ◽  
Astrid Tschan-Plessl ◽  
Benedikt Jacobs ◽  
...  

Neutrophils are innate cells that have been suggested to play a critical role in terminal differentiation of NK cells. Whether this is a direct effect or a consequence of global immune changes with effects on NK cell homeostasis remains unknown. Here, we used high-resolution flow and mass cytometry to examine NK cell repertoires in 64 neutropenic patients and 27 healthy age- and gender-matched controls. A subgroup of neutropenic patients had lower frequencies and absolute numbers of NK cells, yet increased frequencies of CD56bright among NK cells (Figure 1A-C). Moreover, their CD56dim compartment was characterized by a block in differentiation, with a relative lack of NKG2A-CD57+KIR+ NK cells. In line with the differentiation arrest, no expansion of adaptive NK cells could be detected in CMV-seropositive patients from this subgroup. Furthermore, CD56dim NK cells showed increased frequencies of Ki-67+, Tim-3+ and TIGIT+ cells suggestive of activation and exhaustion (Figure 1D). The systemic imprint in the NK cell repertoire was associated with a blunted tumor target cell response with inefficient killing and a lower proportion of degranulating CD56dim cells (Figure 1E). RNA sequencing of the NK cell compartment further revealed that the differentiation arrest was linked to increased expression of transcription factors and genes involved in proliferation and cytokine signaling (Figure 1F). Serum protein profiling of 264 proteins showed upregulation of pathways related to apoptosis and cell turnover, as well as immune regulation and inflammation including higher levels of IL-10, IL-18 and IL-27 in these patients (Figure 1G-H). Notably, the majority of patients with perturbed NK cell compartment exhibited high-grade neutropenia, overall suggesting that the profoundly altered NK cell homeostasis was tightly connected to the severity of their underlying etiology (Figure 1I). Disclosures Meinke: XNK Therapeutics AB: Consultancy. Palmblad:Roche Sweden Inc: Speakers Bureau; Chieti Canada Inc: Consultancy, Membership on an entity's Board of Directors or advisory committees. Malmberg:Vycellix: Membership on an entity's Board of Directors or advisory committees; Fate Therapeutics: Consultancy, Patents & Royalties.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1207-1207
Author(s):  
Christiane I-U Chen ◽  
Steffen Koschmieder ◽  
Linda Kamp ◽  
Bianca Altvater ◽  
Sibylle Pscherer ◽  
...  

Abstract Abstract 1207 Targeted pharmacologic therapy with tyrosine kinase inhibitors (TKIs) has become the first-line treatment for patients with CML. However, BCR-ABL+ stem cells resist elimination by continuous TKI treatment in most patients. By contrast, graft-versus-leukemia effects during allogeneic hematopoietic stem cell transplantation can eradicate the disease, suggesting an important role of the immune system in this disease. Besides cytotoxic T cells, natural killer (NK) cells may be involved in immune control of CML. Here, we explored numbers and functionality of NK cells in CML patients and in a transgenic inducible BCR-ABL mouse model. In 18 patients with newly diagnosed chronic-phase CML, the relative proportions of peripheral blood CD56+CD3- NK cells within the lymphocyte gate were significantly reduced compared to age-matched healthy controls (7.0 ± 5.8% versus 13.1 ± 5.1, p=0.005) and did not recover to normal levels during imatinib-induced remission (9.2 ± 5.9%, p=0.024, follow-up 10–59 months). Functional experiments showed reduced in vitro expansion of CML NK cells at diagnosis in response to stimulation with 4-1BBL/mbIL-15 transduced K562 cells (23.5 ± 14.46 fold vs 41.2 ± 7.2 fold, p=0.013) and under imatinib treatment (31.5 ± 10.5 fold, p=0.03), and a reduced degranulation response to K562 target cells by CD107 upregulation (2.8 ± 2.7% at diagnosis and 9.0 ± 13.2% under treatment, vs. 19.1 ± 8.0% in controls, p=0.003 and p=0.045, respectively). To investigate, whether the defective NK-cell compartment in CML is a consequence of the characteristic BCR-ABL-induced myeloproliferation, we addressed the quantity and functionality of NK cells in a double transgenic mouse model of human CML. Consistent with the results in human CML, the relative proportions of NK1.1+ NK cells among total splenic lymphocytes were significantly reduced in BCR-ABL induced mice (6.4 ± 3.5% vs. 14.7 ± 1.8%, p=0.005). Moreover, compared to NK cells isolated and expanded from BCR-ABL-non-induced control mice, the degranulation response of splenic NK cells from BCR-ABL+ mice to YAC-1/NIH-3T3 cells was significantly decreased (25.7 ± 1.6% vs 42.4 ± 5.6%, p=0.002), and analogous results were obtained with NK cells expanded from bone marrow of these mice (7.7 ± 4.9% vs. 25.0 ± 7.1%, p=0.033). These results suggest both quantitative and qualitative defects within the NK cell compartment in CML. Further work will aim at identifying the underlying mechanisms of the NK cell deficiency in CML, and the development of strategies to utilize NK cells for immunotherapy of CML. Disclosures: Koschmieder: Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding; BMS: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5457-5457
Author(s):  
Anna Puiggros ◽  
Gonzalo Blanco ◽  
Aura Muntasell ◽  
María Rodríguez-Rivera ◽  
Lara Nonell ◽  
...  

Background. Dysregulated NK-cell responses have been reported in chronic lymphocytic leukemia (CLL) patients, but little is known about the NK cell compartment in CLL-like monoclonal B cell lymphocytosis (MBL). Human cytomegalovirus (HCMV) infection induces an adaptive reconfiguration of the NK cell compartment characterized by the differentiation and persistent expansion of a subset displaying the CD94/NKG2C NK receptor (NKR). Moreover, a deletion of the NKG2C (KLRC2) gene has been reported to modulate the magnitude of the NK cell repertoire redistribution. Little is known about the expression of NKG2C in CLL and MBL patients. Aims. To analyse the distribution of NKR, with special attention to NKG2C, in MBL and CLL patients, assessing the relation of the NK cell immunophenotype with clinical features. Methods. The study cohort included 61 patients, 24 were diagnosed with clinical MBL and 37 were treatment-naïve CLL (32/37 Binet A). The expression of NKG2C, NKG2A, ILT2 (LIR1, LILRB1), CD161, CD57 and KIRs (identified with a cocktail of monoclonal antibodies) was assessed by flow cytometry in peripheral blood NK cells. The NKG2C (KLRC2) genotype was analysed in a larger representative MBL/CLL cohort (n=135). Results. The proportions of NK cells were reduced in CLL patients compared to MBL (median 5.5% vs. 10%; P=0.003), whereas their absolute numbers were increased (median 0.85x109/L vs. 0.57x109/L; P=0.002). No significant differences between MBL and CLL were detected regarding the distribution of the different NKR: NKG2C (median: 2.7 vs. 5.9%, respectively), NKG2A (31.4 vs. 30.8%), ILT2 (18.0 vs.15.8%), KIRs (54.4 vs. 52.7%), CD161 (16.1 vs. 16.4%) and CD57 (40.4 vs. 38.9%). Though a reduced NKG2C expression was noticed in both entities, it was specially marked in patients with a greater (>30x109 cells/L) lymphocytosis (1.4 vs. 7.7%, P=0.016). The proportions of NKG2C+ NK cells in HCMV+ patients (85%, 47/55) as compared to HCMV- individuals were not significantly different (6.3% vs. 2.9%, respectively). HCMV+ patients showed a significantly lower NKG2C expression when compared with two independent age-matched cohorts of HCMV+ non-CLL/-MBL individuals, including 43 non-metastatic breast cancer patients (4.2% vs. 15.3% , P<0.001); and 30 renal transplantation donors (4.2% vs.12.4% in P=0.028). The frequencies of NKG2C+/+ (56%), NKG2C+/del (37%) and NKG2Cdel/del (7%) genotypes were comparable to those previously defined in healthy blood donors. Moreover, cases with very low (<2%) or undetectable NKG2C expression were found in NKG2Cdel/del patients (100%, 6/6), but also among NKG2C+/- (45%, 10/22) and NKG2C+/+ (12%, 3/26) genotypes. Conclusions. 1. MBL and CLL exhibited low proportions of NKG2C+ NK cells. This immunophenotype was particularly evident in CLL patients with increased lymphocytosis and could not be explained by differences in HCMV seropositivity, NKG2C zygosity nor age. 2. Additional studies are required to define the mechanism(s) and putative implications of the reduced NKG2C expression in these lymphoproliferative disorders. Acknowledgements. PI11/1621; PI15/437; 2017/SGR437; Fundació La Caixa; Fundación Española de Hematología y Hemoterapia (FEHH). Disclosures Gimeno: JANSSEN: Consultancy, Speakers Bureau; Abbvie: Speakers Bureau. Abrisqueta:Celgene: Consultancy, Honoraria; Abbvie: Consultancy, Honoraria, Other: Travel, Accommodations, expenses, Speakers Bureau; Janssen: Consultancy, Honoraria, Other: Travel, Accommodations, expenses, Speakers Bureau; Roche: Consultancy, Honoraria, Other: Travel, Accommodations, expenses, Speakers Bureau. Bosch:Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Janssen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Kyte: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Acerta: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Celgene: Honoraria, Research Funding; AbbVie: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; F. Hoffmann-La Roche Ltd/Genentech, Inc.: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Takeda: Honoraria, Research Funding; AstraZeneca: Honoraria, Research Funding.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 106-106
Author(s):  
Michelle Gleason ◽  
Todd Lenvik ◽  
Valarie McCullar ◽  
Sarah Cooley ◽  
Michael Verneris ◽  
...  

Abstract Abstract 106 NK cells are an attractive option for immunotherapy as they do not require pre-sensitization for anti-tumor activity and do not induce graft versus host disease (GvHD) in an allogeneic transplant setting. The potential of NK cells in controlling human hematological malignancies has been increasingly recognized in recent years, as the adoptive transfer of alloreactive NK cells in hematopoietic cell transplantation (HCT) clinical trials have demonstrated therapeutic anti-leukemia effects. NK cell function is regulated by the integration of antagonist signals received from cell surface activating and inhibitory receptors. Tim-3 is a novel immune receptor that is a member of the T cell immunoglobulin and mucin-containing domain (TIM) family of glycoproteins. While its role in T cells and antigen presenting cells has been described, little is known about its function in human NK cells. While Tim-3 is present on a variety of immune cells, resting NK cells constitutively express Tim-3 compared to other lymphocyte populations (NK: 73±3%; NKT: 6±1%; T: 1±1%; n=14) and we hypothesized that Tim-3 may be important in mediating NK cell function. The unique subset of cytokine producing CD56Bright NK cells exhibited significantly lower resting Tim-3 expression compared to CD56Dim NK cells (53±3% vs. 75±3%; p<0.001, n=14). Distinct Tim-3 expression patterns were found on resting CD56Dim NK cells and activation with low dose IL-12 (1ng/mL) and IL-18 (10ng/mL), intended to more closely mimic physiologic conditions, resulted in further differentiation of this unique expression pattern dividing NK cells into 4 distinct populations: Tim-3 was homogeneously up-regulated on all CD56Bright NK cells after activation while CD56Dim NK cells were further stratified into 3 defined populations with Tim-3hi, Tim-3lo and Tim-3neg expression. The only identified ligand of Tim-3 is galectin-9 (Gal-9), a β-galactoside binding lectin, which is expressed on a wide range of healthy and malignant cells. To investigate the potential function of Tim-3, an expression vector containing human Gal-9 was transduced into K562 and Raji cells, both without endogenous Gal-9 expression. Resting NK cytotoxicity (51Cr release) was found to be increased in the presence of Gal-9 compared to the non-Gal-9 expressing targets [E:T=0.7:1, K562 vs. K562-Gal-9: 25±3% vs. 33±3% (n=8, p<0.05); E:T=20:1, Raji vs. Raji-Gal-9: 8±1% vs. 17±2% (n=4, p<0.05)]. Analysis of CD107a degranulation showed that resting Tim-3+ CD56Bright cells were more functional against Gal-9 expressing targets than Tim-3− CD56Bright cells, suggesting that Tim-3 might also play a role in IFN-γ production. To further investigate this, resting NK cells were activated with low-dose IL-12/IL-18 overnight and IFN-γ levels were measured in response to soluble rhGal-9 (0, 2.5, 5, 10 and 20nM). Exposure to soluble rhGal-9 alone without IL-12/IL-18 did not induce IFN-γ production. For both the CD56Bright and CD56Dim IL-12/IL-18 activated NK populations, only Tim-3+ NK cells displayed a dose dependent increase in IFN-γ production upon exposure to soluble rhGal-9 compared to Tim-3− NK cells. To understand the relevance of the distinct Tim-3 populations circulating in resting blood, CD56Bright, CD56Dim/Tim-3hi, CD56Dim/Tim-3lo and CD56Dim/Tim-3neg populations were sorted, cultured overnight in IL-12/IL-18 and exposed to soluble rhGal-9. Results showed the Tim-3 expressing populations contain the predominant IFN-γ producing cells that were responsive to rhGal-9 (results for the sorted CD56Dim/Tim-3lo population shown in the figure below). This increase in IFN-γ production within the Tim-3 expressing NK cell populations was abrogated by the addition of β-lactose, a β-galactoside that binds and blocks Gal-9 activity. Lastly, Western blot and immunohistochemistry analysis of human primary acute leukemia blasts revealed high Gal-9 expression. As the presence of ligands for NK cell activating receptors on tumors provide an important prerequisite for NK cell activation and effector function, we show a novel functional role for the receptor Tim-3 in human NK cell biology in the presence of its ligand Gal-9. We, therefore, propose a model where constitutively expressed Tim-3 is up-regulated by NK cell activation and effector function is enhanced by Tim-3/Gal-9 interaction, which may potentiate the elimination of Gal-9 positive tumors by NK cells. Disclosures: Niki: GalPharma: Membership on an entity's Board of Directors or advisory committees. Hirashima:GalPharma: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2316-2316
Author(s):  
Bethan Psaila ◽  
Nayla Boulad ◽  
Emily Leven ◽  
Naznin Haq ◽  
Christina Soo Lee ◽  
...  

Abstract The pathogenesis of immune thrombocytopenia (ITP) is multifactorial, with both cellular and humoural immune dysfunction. The role of NK cells has not been well defined in ITP but in other diseases NK cells have a role in rejecting “foreign” eg transplanted organ or tumor, and also acting against self as occurs in autoimmunity. NK cell activity is orchestrated by the balance of activating vs. inhibitory signalling, in particular via the killer cell immunoglobulin-like receptor (KIR) family of receptors. Significant variation exists in KIR allelic subtype and copy number for the KIR between individuals, and associations have been made with certain haplotypes and a number of autoimmune disorders including rheumatoid arthritis, scleroderma and diabetes. Previous reports have demonstrated a reduction in natural killer (NK) cell number and function in ITP and expression of inhibitory KIR genes is increased in patients in remission vs. active ITP. Methods To explore whether a particular KIR haplotype might predispose to ITP, and also affect response to ITP treatment, we performed KIR genotyping using the Invitrogen SSP kit on 92 patients attending a haematology centre in New York and compared the results to data from 213 controls taken from the USA Eastern Database. Genomic DNA was typed for the inhibitory KIR genes KIR2DL1, KIR2DL2, KIR2DL5A (alleles 001 and 002), KIR2DL5B (alleles 002-004, 06, and 007), KIR3DL1, KIR3DL3; the activating KIR genes KIR2DS1, KIR2DS2, KIR2DS3, KIR2DS4, KIR2DS5, KIR3DS1; the framework genes KIR2DL3, KIR2DL4, KIR3DL2, KIR3DP1; and the pseudogene KIR2DP1. The patients with ITP had been or were receiving treatment with IVIG (n=64), corticosteroids (72) and rituximab (37). Bleeding symptoms were recorded. Response to treatment was defined as complete - platelet count increase to > 100 x 109/mL; partial - platelet count increase to > 50 x 109/mL; or no response. For the purpose of analysis, PRs and CRs were combined. A comprehensive database allowed a logistic regression, assessing both responses to treatments, platelet counts, neutrophil counts, CRP, lymphocyte subsets and bleeding symptoms. Results The expression of two inhibitory KIR genes, 2DL1 and 3DL1, was significantly lower in the patients with ITP as compared to controls (87% 2DL1 and 87% 3DL1 compared to 99% in controls - P < 0.02). Response to rituximab was strongly related to KIR haplotype expression. 2DL1 expression was higher among nonresponders to Rituximab (100% of non responders compared to 82% of responders), whereas 2DL3 expression was significantly lower (79% compared to 90%) (P < 0.05, Figure 1B). Separately, patients with the 2DS3 allele, an activatory KIR, were 5.5 times more likely to have experienced significant bleeding. Conclusions Although these findings are preliminary and require further investigation, these data suggest that increased cytotoxic autoimmunity due to reduced KIR inhibition may be associated with the development of ITP and possibly contribute importantly to the pathogenesis. Anti-CD20 targeting therapy directed at B cells was strongly influenced by 2 different KIRs (1 upregulated and one down-regulated) emphasizing the potential role of NK cells in elimination of tissue-based (nodal) B cells. Finally a more pronounced clinical phenotype with a markedly higher incidence of severe bleeding associated with an increased activatory KIR expression demonstrates the role of NK cells in bleeding presumably via their effects on either endothelial cells or platelet function. These exciting findings will be pursued for confirmation in a larger number of patients. Disclosures: Bussel: Amgen: Family owns stock Other, Membership on an entity’s Board of Directors or advisory committees, Research Funding; Cangene: Research Funding; Genzyme: Research Funding; GlaxoSmithKline: Family owns stock, Family owns stock Other, Membership on an entity’s Board of Directors or advisory committees, Research Funding; IgG of America: Research Funding; Immunomedics: Research Funding; Ligand: Membership on an entity’s Board of Directors or advisory committees, Research Funding; Eisai: Membership on an entity’s Board of Directors or advisory committees, Research Funding; Shionogi: Membership on an entity’s Board of Directors or advisory committees, Research Funding; Sysmex: Research Funding; Symphogen: Membership on an entity’s Board of Directors or advisory committees.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 407-407
Author(s):  
Frank Cichocki ◽  
Jode P Goodridge ◽  
Ryan Bjordahl ◽  
Svetlana Gaidarova ◽  
Sajid Mahmood ◽  
...  

Abstract Treatments for B-cell malignancies have improved over the past several decades with clinical application of the CD20-specific antibody rituximab and chimeric antigen receptor (CAR) T cells targeting CD19. Despite the success of these therapies, loss of CD20 after rituximab treatment has been reported in leukemia and lymphoma patients. Additionally, up to 50% of all patients receiving anti-CD19 CAR T-cell therapy relapse within the first year with many of those patients exhibiting CD19 loss. Thus, new therapeutic approaches are needed to address tumor antigen escape. Accordingly, we generated triple gene-modified iPSC-derived NK (iNK) cells, termed "iDuo" NK cells, tailored to facilitate multi-antigen targeting. The iPSC line was clonally engineered to express high-affinity, non-cleavable CD16a (hnCD16), an anti-CD19 CAR optimized for NK cell signaling, and a membrane-bound IL-15/IL-15R fusion (IL-15RF) molecule to enhance NK cell persistence (Fig. 1A). To model antigen escape, we generated CD19 knockout AHR77 lymphoma cells alongside wild type AHR77 cells (both CD20 +) as targets in cytotoxicity assays. Activated peripheral blood NK (PBNK) cells, non-transduced iNK cells, and iDuo NK cells were tested as effectors. Unlike PBNK cells or non-transduced iNK cells, iDuo NK cells efficiently eliminated wild type AHR77 cells with or without the addition of rituximab at all tested E:T ratios. Similarly, iDuo NK cells in combination with rituximab were uniquely able to efficiently eliminate CD19 KO AHR77 cells due to enhanced antibody-dependent cellular cytotoxicity (ADCC) driven by hnCD16 (Fig. 1B-E). Cytotoxicity mediated by iDuo NK cells was also evaluated using primary chronic lymphocytic leukemia (CLL) cells. Compared to expanded PBNK cells and non-transduced iNK cells, only iDuo NK cells (in the absence of rituximab) were able to kill primary CLL cells (Fig. 1F). Expression of IL-15RF by iDuo NK cells uniquely supports in vitro expansion without the need for cytokine supplementation. To determine whether IL-15RF supports in vivo persistence of iDuo NK cells, CD19 CAR iNK cells (lacking IL-15RF) and iDuo NK cells were injected into NSG mice without the addition of cytokines or CD19 antigen availability. iDuo NK cell numbers peaked within a week after injection and persisted at measurable levels for ~5 weeks, in marked contrast to CD19 CAR iNK cell numbers that were undetectable throughout (Fig. 1G). To evaluate the in vivo function of iDuo NK cells, NALM6 leukemia cells were engrafted into NSG mice. Groups of mice received tumor alone or were treated with 3 doses of thawed iDuo NK cells. iDuo NK cells alone were highly effective in this model as evidenced by complete survival of mice in the treatment group (Fig. 1H). To assess iDuo NK cells in a more aggressive model, Raji lymphoma cells were engrafted, and groups of mice received rituximab alone, iDuo NK cells alone, or iDuo NK cells plus rituximab. Mice given the combination of iDuo NK cells and rituximab provided extended survival compared to all other arms in the aggressive disseminated Raji lymphoma xenograft model (Fig. 1I). One disadvantage of anti-CD19 CAR T cells is their inability to discriminate between healthy and malignant B cells. Because NK cells express inhibitory receptors that enable "self" versus "non-self" discrimination, we reasoned that iDuo NK cells could have higher cytotoxicity against tumor cells relative to healthy B cells. To address this, we labeled Raji cells, CD19 + B cells from healthy donor peripheral blood mononuclear cells (PBMCs) and CD19 - PBMCs. Labeled populations of cells were co-cultured with iDuo NK cells, and specific killing was analyzed. As expected, iDuo NK cells did not target CD19 - PBMCs. Intriguingly, iDuo NK cells had much higher cytotoxic activity against Raji cells compared to primary CD19 + B cells, suggesting a preferential targeting of malignant B cells compared to healthy B cells. Together, these results demonstrate the potent multi-antigen targeting capability and in vivo antitumor function of iDuo NK cells. Further, these data suggest that iDuo NK cells may have an additional advantage over anti-CD19 CAR T cells by discriminating between healthy and malignant B cells. The first iDuo NK cell, FT596, is currently being tested in a Phase I clinical trial (NCT04245722) for the treatment of B-cell lymphoma. Figure 1 Figure 1. Disclosures Cichocki: Gamida Cell: Research Funding; Fate Therapeutics, Inc: Patents & Royalties, Research Funding. Bjordahl: Fate Therapeutics: Current Employment. Gaidarova: Fate Therapeutics, Inc: Current Employment. Abujarour: Fate Therapeutics, Inc.: Current Employment. Rogers: Fate Therapeutics, Inc: Current Employment. Huffman: Fate Therapeutics, Inc: Current Employment. Lee: Fate Therapeutics, Inc: Current Employment. Szabo: Fate Therapeutics, Inc: Current Employment. Wong: BMS: Current equity holder in publicly-traded company; Fate Therapeutics, Inc: Current Employment. Cooley: Fate Therapeutics, Inc: Current Employment. Valamehr: Fate Therapeutics, Inc.: Current Employment. Miller: Magenta: Membership on an entity's Board of Directors or advisory committees; ONK Therapeutics: Honoraria, Membership on an entity's Board of Directors or advisory committees; Vycellix: Consultancy; GT Biopharma: Consultancy, Patents & Royalties, Research Funding; Fate Therapeutics, Inc: Consultancy, Patents & Royalties, Research Funding; Sanofi: Membership on an entity's Board of Directors or advisory committees; Wugen: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3696-3696
Author(s):  
Konstantinos Christofyllakis ◽  
Frank Neumann ◽  
Stephan Stilgenbauer ◽  
Dominic Kaddu-Mulindwa ◽  
Evi Regitz ◽  
...  

Abstract Introduction: We recently showed that vitamin D deficiency leads to decreased overall survival of DLBCL-patients treated with rituximab-chemotherapy (Bittenbring et al, JCO, 2014). We hypothesized that rituximab-mediated NK cell-cytotoxicity is more effective at higher vitamin D levels. This was confirmed by vitamin D substitution of healthy volunteers, which increased their rituximab-mediated cytotoxicity in vitro against the Daudi lymphoma cell line. To unveil the molecular mechanisms behind this finding, resting NK cells before and after vitamin D supplementation were isolated from those volunteers and a whole transcriptome analysis was performed. Methods: We collected PBMCs from eight healthy volunteers with vitamin D deficiency before and after vitamin D substitution to > 30 ng/ml 25-OH vitamin D3. NK cells were isolated from PBMCs by magnetic depletion of all non-NK cells. Purity of the CD16+ cells was confirmed by flow cytometry. After isolating total RNA, we performed a microarray analysis using an Affymetrix Gene-Chip 2.0 ™. The signals were normalized using the LMA algorithm. For pathway analysis, gene set enrichment analysis (GSEA) was used. A two-step approach was chosen. Firstly, we separated 7.705 genes due to their involvement in the NK cell-mediated immune response according to the Gene Ontology database, irrespective of their differential expression. This dataset was used separately for specific analysis of the NK cell-cytotoxicity pathway to increase sensitivity. Secondly, the complete data set of 48.145 genes was used in an exploratory analysis in an attempt to screen for other dysregulated pathways involved in the immune response and vitamin D homeostasis. We used gene sets provided from the Molecular Signature Database. A significance level of < 0.05 for p and False Discovery Rate (FDR) was chosen. Real-time quantitative PCR was performed to confirm the results. Results: The NK cell-associated cytotoxicity pathway was found to be significantly upregulated after restoration of normal vitamin D levels in the specific analysis. The most significantly overexpressed genes in the gene set were five IFN-α subtypes (IFN-α2, IFN-α4, IFN-α6, IFN-α7, and IFN-α10) as well as IFN-κ. The exploratory analysis showed an upregulation of the response to type I interferon pathway and regulation of type I interferon mediated signaling pathway. The most upregulated genes in those pathways were again the IFN-α subtypes mentioned above. Other pathways involved in the immune response were found to be downregulated after vitamin D substitution, like interferon gamma response; cytokine production and chemotaxis. The common denominator of these pathways was the downregulation of three toll-like receptor genes (TLR-8, TLR-7, TLR-2). Conclusion: The increased expression of specific IFN-α subtypes could explain the increased rituximab-mediated NK cell-cytotoxicity after vitamin D substitution in deficient individuals. To the best of our knowledge, this is the first study to suggest a role for vitamin D in IFN-α regulation. TLRs are known to stimulate cytokine production in NK cells including IFN-α. It can be assumed, that the observed upregulation of IFN-α genes after vitamin D substitution leads to a negative feedback on positive regulators of cytokine production like TLR, causing their downregulation once vitamin D levels are restored. This implies a comprehensive role of vitamin D in IFN-α biosynthesis in human NK cells. Disclosures Stilgenbauer: AbbVie: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Hoffmann La-Roche: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; GSK: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Amgen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Mundipharma: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Pharmcyclics: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Genentech: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Gilead: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Boehringer-Ingelheim: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Sanofi: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Genzyme: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 6-6 ◽  
Author(s):  
Veronika Bachanova ◽  
Joseph Maakaron ◽  
David H. McKenna ◽  
Qing Cao ◽  
Todd E. DeFor ◽  
...  

Background: The innate capacity of natural killer (NK) cells to kill tumor targets has been translated into cancer immunotherapy. GDA-201 is a novel allogeneic NK cell product derived from NK cells from healthy donors, expanded ex-vivo with nicotinamide (NAM) and IL-15. We previously reported improved killing function, in vivo proliferation, organ trafficking, and augmented resistance against exhaustion in pre-clinical models. We conducted a phase 1 study of GDA-201 in combination with monoclonal antibodies to enhance NK cell targeting through antibody-dependent cellular cytotoxicity (ADCC). We now report safety data in patients (pts) with relapsed or refractory (R/R) non-Hodgkin lymphoma (NHL) and multiple myeloma (MM), and report efficacy outcomes in pts with NHL. Methods: Following donor apheresis, CD3-depleted mononuclear cells were cultured for 14-16 days with NAM (5mM) and IL-15 (20ng/ml), resulting in a 40-fold increase in NK cells and increased expression of CD62L from 2.9% to 21%. GDA-201 contained ~98% NK cells, and CD3 content was maintained at &lt;0.5% (&lt;5x105/kg/dose). Pts with R/R B-cell NHL or MM received lymphodepleting (LD) therapy with cyclophosphamide (400mg/m2 IV x 3d) and fludarabine (30 mg/m2 /d IV x 3d), followed by GDA-201 (days 0 and 2) and low-dose IL-2 (6 million units sc x 3 doses). Pts with NHL or MM received rituximab (375 mg/m2) or elotuzumab (10 mg/kg), respectively, x 3 weekly infusions. Results: 30 pts were enrolled:15 with NHL and 15 with MM, in 3 cohorts of escalating GDA-201 dose; 15 pts received the maximum target dose (median dose 12.4 [range 2.0-26.0] x 107 cells/kg). There were no dose limiting toxicities. The most common grade 3/4 adverse events were thrombocytopenia (n=9), hypertension (n=5), neutropenia (n=4), febrile neutropenia (n=4), and anemia (n=3). There were no neurotoxic events, confirmed cytokine release syndrome, graft versus host disease, or marrow aplasia. One patient died of E-coli sepsis. In pts with NHL, histologies included diffuse large B cell lymphoma (DLBCL) (de novo n=5, transformed n=3), follicular lymphoma (FL) (n=6), and mantle cell lymphoma (n=1). Median age was 64 (range 48-83 years). Pts had a median of 3 lines of prior therapy (range 1-8); most were multiply relapsed or refractory (n=2), and 87% had advanced stage. Median follow-up was 10.8 months (range 4.3-27.5 months). Ten pts had complete response (CR): 6/6 pts with FL and 4/8 with DLBCL; 1 pt had partial response (PR), and overall response rate in pts with NHL was 73.3%. Median duration of response was 8.7 months (range 4.3-25 months). Flow cytometry confirmed the persistence of GDA-201 in peripheral blood for 7-10 days (range 2-92% donor NK cells on day 7), as well as enhanced in vivo proliferation (median Ki 67 99%). Flow cytometry of biopsied tissues at day 4 demonstrated trafficking to bone marrow and lymph nodes. Four pts underwent re-treatment with GDA-201 without LD chemotherapy; GDA-201 cells were detectable in blood after the re-treatment and likely contributed to deepening of response in 2 patients. Post-GDA-201 therapy included allogeneic (n=2) and autologous (n=1) hematopoietic stem cell transplantation. One-year estimates of progression-free survival and overall survival were 66% (95% CI 36-84%) and 82% (95% CI 42-95%), respectively. Conclusions: Cellular therapy using GDA-201 with monoclonal antibodies to enhance ADCC was well-tolerated, and demonstrated significant clinical activity in heavily pretreated pts with advanced NHL. Data support the future testing of multiple infusions to potentially enhance anti-tumor effect. The omission of lymphodepleting chemotherapy is feasible and contributes to safety of this approach. Phase II studies in aggressive and indolent NHL cohorts are planned. Disclosures Bachanova: Incyte: Research Funding; FATE: Research Funding; Kite: Membership on an entity's Board of Directors or advisory committees; Karyopharma: Membership on an entity's Board of Directors or advisory committees; BMS: Research Funding; Gamida Cell: Membership on an entity's Board of Directors or advisory committees, Research Funding. McKenna:Gamida: Other: Cell Manufacturing; Fate Therapeutics: Other: Cell Manufacturing; Intima: Other: Cell Manufacturing; Magenta: Other: Cell Manufacturing. Janakiram:Takeda, Fate, Nektar: Research Funding. Simantov:Gamida Cell: Current Employment. Lodie:Gamida Cell: Current Employment. Miller:Vycellix: Consultancy; Nektar: Honoraria, Membership on an entity's Board of Directors or advisory committees; Onkimmune: Honoraria, Membership on an entity's Board of Directors or advisory committees; GT Biopharma: Consultancy, Patents & Royalties, Research Funding; Fate Therapeutics, Inc: Consultancy, Patents & Royalties, Research Funding.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3199-3199 ◽  
Author(s):  
Subhashis Sarkar ◽  
Sachin Chauhan ◽  
Arwen Stikvoort ◽  
Alessandro Natoni ◽  
John Daly ◽  
...  

Abstract Introduction: Multiple Myeloma (MM) is a clonal plasma cell malignancy typically associated with the high and uniform expression of CD38 transmembrane glycoprotein. Daratumumab is a humanized IgG1κ CD38 monoclonal antibody (moAb) which has demonstrated impressive single agent activity even in relapsed refractory MM patients as well as strong synergy with other anti-MM drugs. Natural Killer (NK) cells are cytotoxic immune effector cells mediating tumour immunosurveillance in vivo. NK cells also play an important role during moAb therapy by inducing antibody dependent cellular cytotoxicity (ADCC) via their Fcγ RIII (CD16) receptor. Furthermore, 15% of the population express a naturally occurring high affinity variant of CD16 harbouring a single point polymorphism (F158V), and this variant has been linked to improved ADCC. However, the contribution of NK cells to the efficacy of Daratumumab remains debatable as clinical data clearly indicate rapid depletion of CD38high peripheral blood NK cells in patients upon Daratumumab administration. Therefore, we hypothesize that transiently expressing the CD16F158V receptor using a "safe" mRNA electroporation-based approach, on CD38low NK cells could significantly enhance therapeutic efficacy of Daratumumab in MM patients. In the present study, we investigate the optimal NK cell platform for generating CD38low CD16F158V NK cells which can be administered as an "off-the-shelf"cell therapy product to target both CD38high and CD38low expressing MM patients in combination with Daratumumab. Methods: MM cell lines (n=5) (MM.1S, RPMI-8226, JJN3, H929, and U266) and NK cells (n=3) (primary expanded, NK-92, and KHYG1) were immunophenotyped for CD38 expression. CD16F158V coding m-RNA transcripts were synthesized using in-vitro transcription (IVT). CD16F158V expression was determined by flow cytometry over a period of 120 hours (n=5). 24-hours post electroporation, CD16F158V expressing KHYG1 cells were co-cultured with MM cell lines (n=4; RPMI-8226, JJN3, H929, and U266) either alone or in combination with Daratumumab in a 14-hour assay. Daratumumab induced NK cell fratricide and cytokine production (IFN-γ and TNF-α) were investigated at an E:T ratio of 1:1 in a 14-hour assay (n=3). CD38+CD138+ primary MM cells from newly diagnosed or relapsed-refractory MM patients were isolated by positive selection (n=5), and co-cultured with mock electroporated or CD16F158V m-RNA electroporated KHYG1 cells. CD16F158V KHYG1 were also co-cultured with primary MM cells from Daratumumab relapsed-refractory (RR) patients. Results: MM cell lines were classified as CD38hi (RPMI-8226, H929), and CD38lo (JJN3, U266) based on immunophenotyping (n=4). KHYG1 NK cell line had significantly lower CD38 expression as compared to primary expanded NK cells and NK-92 cell line (Figure 1a). KHYG1 electroporated with CD16F158V m-RNA expressed CD16 over a period of 120-hours post-transfection (n=5) (Figure 1b). CD16F158V KHYG1 in-combination with Daratumumab were significantly more cytotoxic towards both CD38hi and CD38lo MM cell lines as compared to CD16F158V KHYG1 alone at multiple E:T ratios (n=4) (Figure 1c, 1d). More importantly, Daratumumab had no significant effect on the viability of CD38low CD16F158V KHYG1. Moreover, CD16F158V KHYG1 in combination with Daratumumab produced significantly higher levels of IFN-γ (p=0.01) upon co-culture with CD38hi H929 cell line as compared to co-culture with mock KHYG1 and Daratumumab. The combination of CD16F158V KHYG1 with Daratumumab was also significantly more cytotoxic to primary MM cell ex vivo as compared to mock KHYG1 with Daratumumab at E:T ratio of 0.5:1 (p=0.01), 1:1 (p=0.005), 2.5:1 (p=0.003) and 5:1 (p=0.004) (Figure 1e). Preliminary data (n=2) also suggests that CD16F158V expressing KHYG1 can eliminate 15-17% of primary MM cells from Daratumumab RR patients ex vivo. Analysis of more Daratumumab RR samples are currently ongoing. Conclusions: Our study provides the proof-of-concept for combination therapy of Daratumumab with "off-the-shelf" CD38low NK cells transiently expressing CD16F158V for treatment of MM. Notably, this approach was effective against MM cell lines even with low CD38 expression (JJN3) and primary MM cells cultured ex vivo. Moreover, the enhanced cytokine production by CD16F158V KHYG1 cells has the potential to improve immunosurveillance and stimulate adaptive immune responses in vivo. Disclosures Sarkar: Onkimmune: Research Funding. Chauhan:Onkimmune: Research Funding. Stikvoort:Onkimmune: Research Funding. Mutis:Genmab: Research Funding; OnkImmune: Research Funding; Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding; Gilead: Research Funding; Celgene: Research Funding; Novartis: Research Funding. O'Dwyer:Abbvie: Membership on an entity's Board of Directors or advisory committees; Celgene: Research Funding; BMS: Research Funding; Glycomimetics: Research Funding; Onkimmune: Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 138-138
Author(s):  
John Daly ◽  
Subhashis Sarkar ◽  
Alessandro Natoni ◽  
Robert Henderson ◽  
Dawn Swan ◽  
...  

Introduction: Evading Natural Killer (NK) cell-mediated immunosurveillance is key to the development of Multiple Myeloma (MM). Recent attention has focused on the role of hypersialylation in facilitating immune-evasion of NK cells. Abnormal cell surface sialylation is considered a hallmark of cancer and we have implicated hypersialylation in MM disease progression. Certain sialylated glycans can act as ligands for the sialic acid-binding immunoglobulin-like lectin (Siglec) receptors expressed by NK cells (Siglec-7 and Siglec-9). These ITIM motif-containing inhibitory receptors transmit an inhibitory signal upon sialic acid engagement. We hypothesized that desialylation of MM cells or targeted interruption of Siglec expression could lead to enhanced NK cell mediated cytotoxicity of MM cells. Methodology: MM cells were treated with the sialidase neuraminidase prior to co-culture with primary NK (PNK) cells. MM cells were treated with 300µM 3Fax-Neu5Ac (sialyltransferase inhibitor) for 3 days prior to co-cultures with PNK cells. PNK cells were expanded, IL-2 activated (500U/ml) overnight, or naïve (resting). Primary MM samples/MM cell lines were screened with Siglec-7/9 chimeras (10µg/ml). PNK (IL-2 activated) cells were stained with anti-Siglec-7 and anti-Siglec-9 antibodies. Siglec-7 was targeted for knockout (KO) using the CRISPR/Cas9 system, a pre-designed guideRNA and the MaxCyteGT transfection system. MM cells were treated with 10µg/ml of Daratumumab prior to co-culture with expanded PNK cells. Results: Using recombinant Siglec-7/9 chimeras a panel of MM cell lines (MM1S, RPMI-8226, H929, JJN3 and U266) were shown to express ligands for Siglec-7 and Siglec-9 (&gt;85%, n=3). Primary MM cells isolated from BM of newly diagnosed (n=3) and relapsed patients (n=2) were also shown to express Siglec-7 ligands (72.5±17.5%, 36.5% respectively). PNK cells express Siglec-7 and Siglec-9 (94.3±3.3% and 61±8.8% respectively, n=6). Desialylation of the MM cell lines JJN3 and H929 using neuraminidase significantly enhanced killing of MM cells by healthy donor (HD) derived PNK cells (expanded, IL-2 activated and naïve, n=7) at multiple effector:target (E:T) cell ratios. Furthermore, de-sialylation of JJN3 and H929 using neuraminidase resulted in increased NK cell degranulation (CD107α expression), compared to a glycobuffer control (n=7). De-sialylation, using 300µM 3Fax-Neu5Ac, resulted in strongly enhanced killing of MM1S by expanded HD-derived PNK cells at multiple E:T ratios (n=5, p&lt;0.01 at 0.5:1, p&lt;0.001 at 1:1, p&lt;0.01 at 2.5:1). Furthermore, CD38 expression on H929 MM cells significantly increased after treatment with 300µM 3Fax-Neu5Ac for 3 days (p&lt;0.01, n=3). In a cytotoxicity assay, expanded PNK cell-mediated antibody dependent cellular cytotoxicity (ADCC) of H929 MM cells pre-treated with Daratumumab (anti-CD38 moAb) and 3Fax-Neu5Ac was significantly higher than H929 cells pre-treated with Dara (p&lt;0.05 at 0.5:1, p&lt;0.01 at 1:1) or 3Fax-Neu5Ac (p&lt;0.01 at 0.5:1, p&lt;0.01 at 1:1) alone (n=5). Using CRISPR/Cas9, over 50% complete KO of Siglec-7 was observed on expanded PNK cells, yet did not result in enhanced NK cell-mediated cytotoxicity against either H929 or JJN3 (n=7). Siglec-9 KO using CRISPR/Cas9 is ongoing. Discussion: Hypersialylation of MM cells facilitates immune evasion and targeted removal of sialic acid strongly enhances the cytotoxicity of NK cells against MM. However, to date the role of Siglecs remains inconclusive. Nevertheless, our data suggest that targeted desialylation is a novel therapeutic strategy worth exploring in MM. In particular, upregulation of CD38 provides a strong rationale for combinatory strategies employing targeted desialylation with CD38 moAbs such as Daratumumab, with the goal of maximizing ADCC. Disclosures Sarkar: Onkimmune: Research Funding. O'Dwyer:Onkimmune: Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding; BMS: Research Funding; GlycoMimetics Inc: Research Funding; AbbVie: Consultancy.


2021 ◽  
Author(s):  
Melanie A MacMullan ◽  
Pin Wang ◽  
Nicholas Alexander Graham

Natural killer (NK) cells are cytotoxic lymphocytes that play a critical role in the innate immune system. Although cytokine signaling is crucial for the development, expansion, and cytotoxicity of NK cells, the signaling pathways stimulated by cytokines are not well understood. Here, we sought to compare the early signaling dynamics induced by the cytokines interleukin (IL)-2 and IL-15 using liquid chromatography-mass spectrometry (LC-MS)-based phospho-proteomics. Following stimulation of the immortalized NK cell line NK-92 with IL-2 or IL-15 for 5, 10, 15, or 30 minutes, we identified 8,692 phospho-peptides from 3,023 proteins. Comparing the kinetic profiles of 3,619 fully quantified phospho-peptides, we found that IL-2 and IL-15 induced highly similar signaling in NK-92 cells. Among the IL-2/IL-15-regulated phospho-sites were both well-known signaling events like the JAK/STAT pathway and novel signaling events with potential functional significance including LCP1 Ser5, PAK2 Ser141, and STK17B Ser12. Using bioinformatic approaches, we sought to identify kinases regulated by IL-2/IL-15 stimulation and found that the p90 ribosomal S6 kinase (p90RSK) family was activated by both cytokines. Using pharmacological inhibitors, we then discovered that RSK signaling is required for IL-2 and IL-15-induced proliferation in NK-92 cells. Taken together, our analysis represents the first phospho-proteomic characterization of cytokine signaling in NK cells and increases our understanding of how cytokine signaling regulates NK cell function.


Sign in / Sign up

Export Citation Format

Share Document