scholarly journals Effect of Bruton Tyrosine Kinase Inhibitor on Serologic and Cellular Immune Responses to Recombinant Zoster Vaccine

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1556-1556
Author(s):  
Christopher Pleyer ◽  
Kerry J Laing ◽  
Mir Ali ◽  
Christopher L McClurkan ◽  
Susan Soto ◽  
...  

Abstract Introduction The recombinant zoster vaccine (RZV) is effective in preventing herpes zoster reactivation in the general population. We previously showed that patients with chronic lymphocytic leukemia (CLL), particularly those receiving Bruton tyrosine kinase inhibitors (BTKis), have decreased humoral immune responses following vaccination. The impact of vaccination on cellular immune responses in CLL patients is not well characterized. Understanding the effect of humoral and cellular immunity in CLL patients who are treatment naïve or receiving BTKis can inform vaccination strategies in this immunosuppressed patient population. Methods In this phase II open-label study (NCT03702231), patients with CLL who were either treatment naïve (TN) or receiving a BTKi (ibrutinib or acalabrutinib) received 2 doses of RZV via intramuscular injection at baseline and 3 months. Subjects were followed for 6 months and assessed for serologic response at 3 and 6 months. Serologic response was defined as a ≥ four-fold rise in anti-glycoprotein E (anti-gE) IgG serum titer at the 6 month timepoint. Cellular immune response was assessed by intracellular cytokine staining and flow cytometric analysis of gE-specific CD4+ T cells expressing upregulation of ≥2 effector molecules (interferon-γ, interleukin-2, tumor necrosis factor-α, and/or CD40 ligand). Cellular response was defined as ≥ two-fold rise over baseline and ≥320 net gE-specific CD4(2+) cells per million CD4+ T cells. Descriptive statistics were used to report vaccine response rates. Mann-Whitney test and Fisher's exact test were used to compare titers and response rates between different groups. Spearman r was used to measure the correlation between vaccine responses and clinical characteristics. All subjects completed an adverse event (AE) diary documenting any local (injection site) or systemic AE that started within 7 days after receiving the first and second vaccine dose. Results 106 subjects had serologic response assessment at 6 months. Baseline characteristics are shown in Table 1. The serologic response rate to RZV was significantly higher in the TN cohort (76.8%, 95% CI, 64.2-85.9; n = 56) compared to patients receiving a BTKi (40.0%, 95% CI,27.6-53.8; n = 50; P = .0002). Cellular vaccine response was assessed in 94 subjects at 6 months. Similarly, the rate of cellular immunity was significantly higher in the TN cohort (69.4%, 95% CI,55.5-80.5; n = 49) compared to patients treated with a BTKi (40.0%, 95% CI,27.0-54.5; n = 45, P = .0067). Paired serologic and cellular responses were available in 93 subjects. 68.5% (95% CI,55.3-79.3; n = 54) of subjects with a serologic response also had a positive cellular immune response, whereas 35.9% (95% CI,22.7-51.6; n = 39) of subjects attained a cellular immune response in absence of a serologic response (P = .0029) (Figure 1). Among subjects with a negative serologic response and a positive cellular immune response, 42.9% were TN (n = 6) and 57.1% (n = 8) received a BTKi. There was no difference in serologic or cellular responses between patients treated with ibrutinib and acalabrutinib (P > 0.05). Serologic antibody titers and T cell responder frequencies were weakly positively correlated (r = 0.26; 95%CI .05-.44; P = .0127). Serologic titers and T cell responses were not correlated with age, beta-2 microglobulin, absolute lymphocyte count, absolute peripheral blood CD19+, CD3+, CD4+ or CD8+ counts or serum immunoglobulin levels (IgA, IgG, IgM) (all P > 0.05). The most frequent local and systemic AEs were injection site pain (98.3%), injection site reaction (97.4%), headache (51.7%), and generalized myalgias (51.7%). Most AEs were grade 1-2 and all AEs resolved or returned to baseline within 7 days of vaccine administration. Conclusions RZV is safe in CLL patients and can induce both humoral and cellular immune responses. BTKi treatment was associated with impaired serologic and cellular vaccine responses compared to TN patients. Although BTKi therapy may inherently decrease vaccine immunogenicity, TN CLL patients could be more immunocompetent because of less advanced disease, thereby permitting more effective immune responses. The majority of patients with a positive antibody response also developed virus-specific T cells following vaccination. Approximately one third of patients without a positive serologic response developed virus reactive T cells. Figure 1 Figure 1. Disclosures Laing: Curevo Vaccine: Consultancy; MaxHealth LLC: Consultancy. Wiestner: Acerta Pharma: Research Funding; Pharmacyclics LLC: Research Funding; Merck: Research Funding; Nurix: Research Funding; Verastem: Research Funding; Genmab: Research Funding. Koelle: Merck: Research Funding; Curevo Vaccine: Other: Scientific Advisory Board ; MaxHealth LLC: Other: Scientific Advisory Board ; Oxford Immunotec: Research Funding; Sensei Biotherapeutics: Research Funding; Sanofi Pasteur: Research Funding. Sun: Genmab: Research Funding.

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 195-195
Author(s):  
Magdalena Corona De Lapuerta ◽  
Sara Rodriguez-Mora ◽  
Guiomar Casado-Fernandez ◽  
Javier Garcia-Pérez ◽  
Lorena Vigon ◽  
...  

Abstract Background: Oncohematological patients present a variable immune response against many vaccines, due to the immunodeficiency caused by the disease and its treatment. The experience of vaccination against COVID-19 in oncohematological patients is low and mostly limited to studies of humoral immunity. However, the humoral and cellular immune responses between different oncohematological diseases (OHD) have not been compared. Objective: To compare the humoral and cellular immune responses in four groups of patients with OHD after receiving the first dose of one COVID-19 vaccine. Materials & methods: We recruited 53 patients in four groups according to diagnosis: Chronic Lymphatic Leukemia (CLL) (n=14), Chronic Myeloid Leukemia (CML) (n=11), Multiple Myeloma (MM) (n=15), and Allogeneic Hematopoietic Stem Cell Transplantation (ASCT) (n=13) (Table 1). Samples were collected prior to vaccination and 3 weeks after receiving one dose of COMIRNATY (BioNTech-Pzifer), mRNA-1273 (Moderna), or AZD1222 (AstraZeneca). Twenty-six healthy donors with similar vaccination pattern were recruited. IgG titers against SARS-CoV-2 were quantified by Euroimmun-Anti-SARS-CoV-2 ELISA. Direct cellular cytotoxicity (DCC) was determined against Vero E6 cells infected with pseudotyped SARS-CoV-2, measuring caspase-3 activation after co-culture with PBMCs, in which cytotoxic populations were phenotyped by flow cytometry. Antibody-dependent cellular cytotoxicity (ADCC) analyses were performed using Annexin V on Raji cells as a target. Results: 1) Early humoral response against COVID-19 vaccination in patients with CML was 5.1- (p<0.0001), 2.8- (p=0.0027), and 3.2-fold (p<0.0001) higher than in patients with CLL, MM and HSCT, respectively, and 3.5-fold higher than in healthy donors (p=0.0460) (Fig. 1). 84% of CLL patients did not develop detectable IgG titers. Individuals with OHD developed lower titres of neutralizing antibodies than healthy donors. 2) Unspecific ADCC was overall reduced in patients with OHD, mostly in individuals with ASCT (3.2-fold lower (p<0,0001)), whereas ADCC was reduced 2.2- (p<0.0001), 1.8- (p=0.0040), and 2.2-fold (p<0.0001) in individuals with CLL, CML and MM, respectively (Fig. 2A). However, specific DCC was increased 4.7-, 8.1- (p=0.0189), and 2.1-fold, respectively, in PBMCs from patients with CLL, MM, or ASCT, in comparison with healthy donors, whereas patients with CML showed a very similar response than healthy donors (Fig. 2B). 3) Levels of CD3+CD8+TCRγδ+ T cells were increased 2.2-, 2.1-, 2.7-, and 4.3-fold (p=0.0394) in patients with CLL, CML, MM, and ASCT, respectively, in comparison with healthy donors. CD3+CD8-TCRγδ+ T cells were also increased in patients with OHD, expressing high levels of the degranulation marker CD107a. However, the levels of CD3-CD56+CD107a+ NK cells were reduced 4.2- (p=0.0003) and 3.6-fold (p=0.0010) in PBMCs from patients with MM and ASCT, respectively, in comparison with healthy donors. Conclusions: We found significant differences in the early humoral immune response after one single dose of COVID-19 vaccine depending on the OHD analyzed. It was observed for the first time that the early cytotoxic immune response is efficient in all groups of patients, although superior in those who were not exposed to ASCT. Most cytotoxic activity relied on CD8+ T cells. These data can be useful to determine the efficacy of COVID-19 vaccines in patients with OHD. Figure 1 Figure 1. Disclosures Garcia Gutierrez: BMS: Consultancy, Honoraria, Research Funding; Novartis: Consultancy, Honoraria, Research Funding; Incyte: Consultancy, Honoraria, Research Funding; Pfizer: Consultancy, Honoraria, Research Funding.


2002 ◽  
Vol 76 (12) ◽  
pp. 6093-6103 ◽  
Author(s):  
Eishiro Mizukoshi ◽  
Michelina Nascimbeni ◽  
Joshua B. Blaustein ◽  
Kathleen Mihalik ◽  
Charles M. Rice ◽  
...  

ABSTRACT The chimpanzee is a critical animal model for studying cellular immune responses to infectious pathogens such as hepatitis B and C viruses, human immunodeficiency virus, and malaria. Several candidate vaccines and immunotherapies for these infections aim at the induction or enhancement of cellular immune responses against viral epitopes presented by common human major histocompatibility complex (MHC) alleles. To identify and characterize chimpanzee MHC class I molecules that are functionally related to human alleles, we sequenced 18 different Pan troglodytes (Patr) alleles of 14 chimpanzees, 2 of them previously unknown and 3 with only partially reported sequences. Comparative analysis of Patr binding pockets and binding assays with biotinylated peptides demonstrated a molecular homology between the binding grooves of individual Patr alleles and the common human alleles HLA-A1, -A2, -A3, and -B7. Using cytotoxic T cells isolated from the blood of hepatitis C virus (HCV)-infected chimpanzees, we then mapped the Patr restriction of these HCV peptides and demonstrated functional homology between the Patr-HLA orthologues in cytotoxicity and gamma interferon (IFN-γ) release assays. Based on these results, 21 HCV epitopes were selected to characterize the chimpanzees' cellular immune response to HCV. In each case, IFN-γ-producing T cells were detectable in the blood after but not prior to HCV infection and were specifically targeted against those HCV peptides predicted by Patr-HLA homology. This study demonstrates a close functional homology between individual Patr and HLA alleles and shows that HCV infection generates HCV peptides that are recognized by both chimpanzees and humans with Patr and HLA orthologues. These results are relevant for the design and evaluation of vaccines in chimpanzees that can now be selected according to the most frequent human MHC haplotypes.


Viruses ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1396
Author(s):  
Xiaoli Hao ◽  
Shuai Li ◽  
Lina Chen ◽  
Maoli Dong ◽  
Jiongjiong Wang ◽  
...  

Avian influenza virus (AIV) emerged and has continued to re-emerge, continuously posing great threats to animal and human health. The detection of hemagglutination inhibition (HI) or virus neutralization antibodies (NA) is essential for assessing immune protection against AIV. However, the HI/NA-independent immune protection is constantly observed in vaccines’ development against H7N9 subtype AIV and other subtypes in chickens and mammals, necessitating the analysis of the cellular immune response. Here, we established a multi-parameter flow cytometry to examine the innate and adaptive cellular immune responses in chickens after intranasal infection with low pathogenicity H7N9 AIV. This assay allowed us to comprehensively define chicken macrophages, dendritic cells, and their MHC-II expression, NK cells, γδ T cells, B cells, and distinct T cell subsets in steady state and during infection. We found that NK cells and KUL01+ cells significantly increased after H7N9 infection, especially in the lung, and the KUL01+ cells upregulated MHC-II and CD11c expression. Additionally, the percentages and numbers of γδ T cells and CD8 T cells significantly increased and exhibited an activated phenotype with significant upregulation of CD25 expression in the lung but not in the spleen and blood. Furthermore, B cells showed increased in the lung but decreased in the blood and spleen in terms of the percentages or/and numbers, suggesting these cells may be recruited from the periphery after H7N9 infection. Our study firstly disclosed that H7N9 infection induced local and systemic cellular immune responses in chickens, the natural host of AIV, and that the flow cytometric assay developed in this study is useful for analyzing the cellular immune responses to AIVs and other avian infectious diseases and defining the correlates of immune protection.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 235-235 ◽  
Author(s):  
Marcelo A. Navarrete ◽  
Kristina Heining-Mikesch ◽  
Cristina Bertinetti-Lapatki ◽  
Marcus Duehren-von Minden ◽  
Andrea Hafkemeyer ◽  
...  

Abstract Idiotype vaccination refers to active immunization of B-cell lymphoma (B-NHL) patients with the clonal immunoglobulin (Ig) expressed by the tumor cells. After systemic cytoreductive therapy, idiotype vaccination has been shown to induce specific cellular and humoral immune responses; and humoral responses in particular are associated with prolonged remission and encouraging survival rates. Conventional idiotype vaccines are composed of the entire lymphoma-derived Ig coupled to the immunogenic carrier KLH and are administered subcutaneously with adjuvant. We have developed a idiotype production strategy based on bacterial expression of the lymphoma-derived idiotype as a recombinant Fab fragment (Bertinetti et al., EJH 2006). Intradermal administration of this antigen with lipid-based adjuvant and subcutaneous coadministration of GM-CSF had excellent immunogenicity in a phase I trial of advanced, heavily pretreated B-NHL patients (Bertinetti et al., Cancer Research 2006). In a subsequent phase II trial, 20 patients with untreated indolent B-NHL (14 follicular [FL], 3 nodal marginal zone [nMZL], 3 mantle cell [MCL]) and without immediate need for cytoreduction received at least 6 monthly idiotype vaccinations. No grade IV toxicities were seen, and the sole case of grade III toxicity, generalized erythema, did not preclude completion of the vaccination schedule. Prior to vaccination, 5/19 patients (26%) had decreased CD4+ and 6/19 patients (31%) low CD8+ T cells counts. Furthermore, 10/12 anti-HbS-negative patients (83%) failed to mount a detectable immune response to a conventional hepatitis B vaccine administered concomitantly to idiotype vaccination. Despite this functional immunodeficiency, 12/18 analyzed patients (66%) developed a cellular immune response to idiotype as detected by enumeration of IFNgamma-secreting cells by DC-ELISpot. The ELISpot protocol was validated by blinded interlaboratory testing (www.cimt.de). The frequency of idiotype-responding T cells increased from the 2nd to the 6th vaccination and could be effectively boostered by maintenance immunization in 3-monthly intervals. In vitro stimulation of PBMC from responding patients with idiotype induced specific proliferation of CD4+ T-cells and a shift towards a Th1 response in post-vaccination samples. In addition, 8/18 analyzed patients (44%) developed anti-idiotype IgG or IgM antibodies as assessed by ELISA, and the combined immune response rate was 85%. After a median follow-up of 34 months, 8 patients (40%) are progression-free, and 10 (50%) did not require cytoreductive therapy. Cellular immune responses were associated with superior PFS (p<0.05), and 5 of 6 non-responders eventually required cytoreductive therapy. Humoral immune responses were not related to PFS. Six patients (30%; only FL or nMZL) achieved an objective partial remission, including near-complete disappearance of a large submandibular mass and one subcutaneous lymphoma mass. All objective responders developed specific cellular immunity, but only 4 anti-idiotype antibodies. Five patients are in continuing remission for 12–49 months. Intradermal immunization with the chosen idiotype formulation has excellent immunogenicity despite a severely impaired immune function in untreated B-NHL patients. Furthermore, this is the first active immunotherapy trial showing objective and durable lymphoma responses in first-line therapy at a higher rate than expected for spontaneous remissions. In this setting, and in contrast to conventional idiotype vaccination schedules, cellular anti-idiotype immunity may play a crucial role for a favorable clinical outcome. Since passive humoral anti-lymphoma immunity can be easily transferred by infusions of commercially available monoclonal antibodies, synergistic benefit may be envisioned for an initial vaccination course aimed to prime anti-idiotype T-cells combined with subsequent passive immunotherapy.


2017 ◽  
Vol 41 (2) ◽  
pp. 423-438 ◽  
Author(s):  
Quanhui Tan ◽  
Siyuan Ma ◽  
Jianjun Hu ◽  
Xiaohua Chen ◽  
Yongsheng Yu ◽  
...  

Background: Chronic hepatitis B virus (HBV) infection is associated with a weak but specific cellular immune response of the host to HBV. Tripeptidyl peptidaseⅡ (TPPⅡ), an intracellular macromolecule and proteolytic enzyme, plays an important complementary and compensatory role for the proteasome during viral protein degradation and major histocompatibility complex class I antigen presentation by inducing a specific cellular immune response in vivo. Based on a previous study, we aimed to explore the role of MHC class I antigen presentation in vivo and the mechanisms that may be involved. Methods: In this study, recombinant adenoviral vectors harboring the hepatitis B core antigen (HBcAg) and the TPPII gene were constructed (Adv-HBcAg and Adv-HBcAg-TPPII), and H-2Kd HBV-transgenic BALB/c mice and HLA-A2 C57BL/6 mice were immunized with these vectors, respectively. We evaluated the specific immune responses induced by Adv-HBcAg-TPPII in the HBV transgenic BALB/c mice and HLA-A2 C57BL/6 mice as well as the anti-viral ability of HBV transgenic mice, and we explored the underlying mechanisms. Results: We found that immunization with Adv-HBcAg-TPPII induced the secretion of the cytokines interleukin-2 (IL-2), interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) as well as the activities of IFN-γ-secreting CD8+ T cells and CD4+ T cells. In addition, HBcAg-specific CTL activity in C57/BL mice and HBV transgenic animals was significantly enhanced in the Adv-HBcAg-TPPII group. Furthermore, Adv-HBcAg-TPPII decreased the hepatitis B surface antigen (HBsAg) and HBV DNA levels and the amount of HBsAg and HBcAg in liver tissues. Moreover, Adv-HBcAg-TPPII enhanced the expression of T-box transcription factor (T-bet) and downregulated GATA-binding protein 3 (GATA-3) while increasing the expression levels of JAK2, STAT1, STAT4 and Tyk2. Conclusions: These results suggested that the JAK/STAT signaling pathway participates in the CTL response that is mediated by the adenoviral vector encoding TPPII. Adv-HBcAg-TPPII could therefore break immune tolerance and stimulate HBV-specific cytotoxic T lymphocyte activity and could have a good therapeutic effect in transgenic mice.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1852-1852 ◽  
Author(s):  
Rao H Prabhala ◽  
Yvonne A Efebera ◽  
Saem Lee ◽  
Andrew J Han ◽  
Dheeraj Pelluru ◽  
...  

Abstract Abstract 1852 Poster Board I-878 Multiple myeloma patients suffer from infection related complications. Abnormalities in both cellular and humoral immune responses have been considered responsible. Patients have been routinely immunized with vaccinations to prevent infection related problems, however, efficacy of such vaccination in early or stable myeloma remains unclear. Previously, we have shown immunomodulatory and T cell co-stimulatory effects of lenalidomide, which can up-regulate cellular immune responses in myeloma. Based on these results we initiated a study to evaluate the efficacy of lenalidomide compared to placebo on the effect of Hepatitis B (HepB) vaccination in patients with monoclonal gamopathy of undetermined significance (MGUS), smoldering myeloma or stable multiple myeloma (MM) not requiring any therapy. Patients were randomized to lenalidomide or placebo for 14 days with HepB vaccination on day 8. They were given option for 2nd and 3rd HepB vaccinations at 1 month and 6 month. Primary objective was to evaluate antibody response to Hepatitis Surface antigen (HepBSAg) at 1 month after vaccination. We also measured HepBSAg-specific cellular immune responses using HepBSAg protein and HLA-A2 peptide. At the time of data analysis, the study remains blinded. Thirty two patients have completed their initial vaccination (25 MGUS and 7 MM), while 22 patients (16 MGUS, 6 MM) have completed 3 vaccinations with 6 months follow up. None of the 32 patients, with MGUS or MM, had antibody response to vaccination at 1 month; while after 3 vaccination only 30% patients (7 of 24) demonstrated antibody response to HepBSAg (titer values 128.4±36.4). This is significantly below responses reported in literature in healthy individuals (90%). Responses in patients with MGUS (4 of 16) were not significantly different than in patients with MM (3 of 6). No base line patient characteristics predicts responders vs. non-responders. We have further analyzed HepBSAg-specific T cell immune response by detecting the presence of pentamer-positive CD8 cells with HepB surface antigen-peptide in HLA-A2+ samples. Five of seven responders were HLA-A2 positive, and none of them showed T cell response to HbSAg following vaccination as detected by change in pentamer positive cells. Three patients showed T cell-proliferative responses to HepBsAg; one of which had long term response. None of the non-responders tested demonstrated proliferative response to HepBSAg. The randomization remains blinded at the moment and hence effect of lenalidomide on immune response is not available at the present time. These results have very high clinical significance. It suggests that even in MGUS there is significant and profound functional immune suppression. Strategies to prevent infection and improve immune responses needs to be developed for both preventative purposes as well as for anti-MM vaccinations. Disclosures: Laubach: Novartis: . Richardson:Keryx Biopharmaceuticals: Honoraria. Anderson:Millenium: Consultancy, Honoraria, Research Funding; Celgene: Consultancy, Honoraria, Research Funding; Novartis: Consultancy, Honoraria, Research Funding.


1980 ◽  
Vol 29 (3) ◽  
pp. 945-952
Author(s):  
K Goldstein ◽  
P K Lai ◽  
M Lightfoote ◽  
A P Andrese ◽  
D Fuccillo ◽  
...  

Immune responses to Epstein-Barr herpesvirus (EBV) and EBV-related antigens were studied serially in 18 patients with heterophil antibody-positive infectious mononucleosis and in 18 control subjects. Enhanced cellular immune responses to EBV particles and to EBV intracellular soluble antigens were found in the patients at convalescence, suggesting that the development of specific cellular immune responses was associated with apparent control of the virus infection. In addition, a correlation between severity of disease and specific cellular immune response was found. Patients with severe clinical signs were found to have a more active cellular immune response to EBV intracellular soluble antigens early in the infection compared with patients with mild disease. This suggests that an increased immune reactivity to intracellular antigens during the early part of the illness is related to the severity of clinical manifestations in infectious mononucleosis. Serum antibody to viral capsid antigen and early antigen was not related to the severity of clinical disease.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Alexandra J. Spencer ◽  
Paul F. McKay ◽  
Sandra Belij-Rammerstorfer ◽  
Marta Ulaszewska ◽  
Cameron D. Bissett ◽  
...  

AbstractSeveral vaccines have demonstrated efficacy against SARS-CoV-2 mediated disease, yet there is limited data on the immune response induced by heterologous vaccination regimens using alternate vaccine modalities. Here, we present a detailed description of the immune response, in mice, following vaccination with a self-amplifying RNA (saRNA) vaccine and an adenoviral vectored vaccine (ChAdOx1 nCoV-19/AZD1222) against SARS-CoV-2. We demonstrate that antibody responses are higher in two-dose heterologous vaccination regimens than single-dose regimens. Neutralising titres after heterologous prime-boost were at least comparable or higher than the titres measured after homologous prime boost vaccination with viral vectors. Importantly, the cellular immune response after a heterologous regimen is dominated by cytotoxic T cells and Th1+ CD4 T cells, which is superior to the response induced in homologous vaccination regimens in mice. These results underpin the need for clinical trials to investigate the immunogenicity of heterologous regimens with alternate vaccine technologies.


Blood ◽  
2003 ◽  
Vol 101 (3) ◽  
pp. 807-814 ◽  
Author(s):  
James W. Lillard ◽  
Udai P. Singh ◽  
Prosper N. Boyaka ◽  
Shailesh Singh ◽  
Dennis D. Taub ◽  
...  

AbstractMacrophage inflammatory protein-1α (MIP-1α) and MIP-1β are distinct but highly homologous CC chemokines produced by a variety of host cells in response to various external stimuli and share affinity for CCR5. To better elucidate the role of these CC chemokines in adaptive immunity, we have characterized the affects of MIP-1α and MIP-1β on cellular and humoral immune responses. MIP-1α stimulated strong antigen (Ag)–specific serum immunoglobulin G (IgG) and IgM responses, while MIP-1β promoted lower IgG and IgM but higher serum IgA and IgE antibody (Ab) responses. MIP-1α elevated Ag-specific IgG1 and IgG2b followed by IgG2a and IgG3 subclass responses, while MIP-1β only stimulated IgG1 and IgG2b subclasses. Correspondingly, MIP-1β produced higher titers of Ag-specific mucosal secretory IgA Ab levels when compared with MIP-1α. Splenic T cells from MIP-1α– or MIP-1β–treated mice displayed higher Ag-specific Th1 (interferon-γ [IFN-γ]) as well as selective Th2 (interleukin-5 [IL-5] and IL-6) cytokine responses than did T cells from control groups. Interestingly, mucosally derived T cells from MIP-1β–treated mice displayed higher levels of IL-4 and IL-6 compared with MIP-1α–treated mice. However, MIP-1α effectively enhanced Ag-specific cell-mediated immune responses. In correlation with their selective effects on humoral and cellular immune responses, these chemokines also differentially attract CD4+ versus CD8+ T cells and modulate CD40, CD80, and CD86 expressed by B220+ cells as well as CD28, 4-1BB, and gp39 expression by CD4+ and CD8+ T cells in a dose-dependent fashion. Taken together, these studies suggest that these CC chemokines differentially enhance mucosal and serum humoral as well as cellular immune responses.


Vaccines ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 126
Author(s):  
Lilin Lai ◽  
Nadine Rouphael ◽  
Yongxian Xu ◽  
Amy C. Sherman ◽  
Srilatha Edupuganti ◽  
...  

The cellular immune responses elicited by an investigational vaccine against an emergent variant of influenza (H3N2v) are not fully understood. Twenty-five subjects, enrolled in an investigational influenza A/H3N2v vaccine study, who received two doses of vaccine 21 days apart, were included in a sub-study of cellular immune responses. H3N2v-specific plasmablasts were determined by ELISpot 8 days after each vaccine dose and H3N2v specific CD4+ T cells were quantified by intracellular cytokine and CD154 (CD40 ligand) staining before vaccination, 8 and 21 days after each vaccine dose. Results: 95% (19/20) and 96% (24/25) subjects had pre-existing H3N2v specific memory B, and T cell responses, respectively. Plasmablast responses at Day 8 after the first vaccine administration were detected against contemporary H3N2 strains and correlated with hemagglutination inhibition HAI (IgG: p = 0.018; IgA: p < 0.001) and Neut (IgG: p = 0.038; IgA: p = 0.021) titers and with memory B cell frequency at baseline (IgA: r = 0.76, p < 0.001; IgG: r = 0.74, p = 0.0001). The CD4+ T cells at Days 8 and 21 expanded after prime vaccination and this expansion correlated strongly with early post-vaccination HAI and Neut titers (p ≤ 0.002). In an adult population, the rapid serological response observed after initial H3N2v vaccination correlates with post-vaccination plasmablasts and CD4+ T cell responses.


Sign in / Sign up

Export Citation Format

Share Document