scholarly journals CEBPA Directly Binds Ribosomal DNA and Promotes Ribosomal RNA Transcription in Myeloid Progenitors

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3269-3269
Author(s):  
Charles Antony ◽  
Subin S George ◽  
Justin Blum ◽  
Patrick Somers ◽  
Dexter Wu-corts ◽  
...  

Abstract Hematopoietic stem cells (HSCs) form a hierarchy of lineage restricted progenitor cells to produce mature hematopoietic cells that vary in function, size, proliferation, and protein synthesis rates. Different hematopoietic cells also vary in the rate of ribosomal RNA (rRNA) transcription, the key rate-limiting step in ribosome biogenesis that occurs in the nucleolus. Leukemic blast cells have long been identified by their prominent nucleoli, indicating high ribosome biogenesis rates (Fig A). Ribosome biogenesis is an extremely energy intensive process begins with transcription of multi-copy rDNA genes by RNA polymerase I (Pol I) to produce 47S precursor rRNA (pre-rRNA) which further processed into the generation of mature 18S, 5.8S, and 28S rRNA and assembled with 5S rRNA and 80 different ribosomal proteins to form mature ribosomes (Fig B). This process is highly dynamic and regulated at the level of rRNA transcription. Despite cell-type and disease-specific variations, rRNA transcription has long been considered a housekeeping process. Hence, cell or tissue type-specific regulation of rRNA transcription has rarely been explored. To identify cell-type-specific regulators of rRNA transcription in hematopoiesis, we mapped 2200 publicly available ChIP-Seq datasets representing 249 hematopoietic transcription factors (TFs) and epigenetic factors to create an atlas of hematopoietic TF-rDNA binding. We identified CEBPA that shows consistent and abundant binding to rDNA at a conserved, previously unknown motif in both species (Fig C). CEBPA is a myeloid lineage specific TF whose knockout leads to complete loss of all myeloid lineage cells. It is also frequently mutated (10%) in AML patients. So we picked CEBPA to further characterize its role in rRNA transcription. Since CEBPA deletion causes loss of granulocyte-monocyte progenitors (GMPs), we used the mouse HoxA9-ER cell line (which closely resembles GMPs). To study the immediate consequences of CEBPA loss, We generated a stable degron cell line by biallelically fusing FKBP degron into endogenous loci of Cebpa, enabling to rapidly degrade endogenous CEBPA protein on treatment with dTagV ligand (Fig D, E). To precisely quantify the rate of rRNA transcription, we developed a novel assay called '47S-FISH-Flow' that involves hybridizing fluorescent oligos unique to 5' end of 47S pre-rRNA, which only marks newly synthesized nascent rRNA in the nucleolus, and quantify using flow cytometry (Fig F, G). We found that depleting CEBPA caused rapid decrease in 47S rRNA level and occupancy of Pol I on rDNA (Fig H, I). In summary, we found that myeloid lineage specific TF CEBPA abundantly binds to a conserved motif in rDNA and the depletion of CEBPA rapidly reduces nascent 47S rRNA, indicating that it directly promotes rRNA transcription. Our results, and the tools and experimental systems we have developed, shed light on an important and largely unexplored aspect of hematopoietic biology: the regulation of rRNA transcription by lineage-specific hematopoietic TFs. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 11-12
Author(s):  
Charlesantony Aruljothi ◽  
Subin S George ◽  
Patrick Somers ◽  
Justin Blum ◽  
Chelsea Thorsheim ◽  
...  

Haematopoiesis relies on the ability of hematopoietic stem cells to progress through a systematic hierarchy to produce lineage-restricted progenitors that terminally differentiate into phenotypically distinct types of mature hematopoietic cells. This process is precisely coordinated by the combinatorial activity of lineage-specifying transcription factors (TFs). Indeed, the critical transcriptional program of every hematopoietic cell type, and indeed of all cell types throughout the body, requires a set of core TFs for its proper execution. A frequently-overlooked component of the cellular transcriptional program is the transcription of ribosomal RNA (rRNA), the major component of ribosomes. Ribosomal RNA comprises 90% of total cellular RNA, and its transcription from hundreds of rDNA genes by RNA polymerase I is one of the most intense transcriptional processes in the cell. Different progenitor and mature cell types in the hematopoietic tree have different sizes, ribosome abundances, and rates of protein synthesis. Tight control of ribosome abundance is essential for a normal cellular proteome, and different cell types within the hematopoietic tree have varied rRNA transcription rates. However, there has been limited study of the molecular basis of lineage-specific regulation of rDNA transcription in hematopoiesis. We explored the binding to rDNA of over twenty key hematopoietic TFs that were determined by the Broad Institute DepMap database to be crucial for survival of hematopoietic cell lines. Using a customized bioinformatics pipeline, we mapped over three hundred ChIP-Seq datasets for these factors (generated by us as well as publicly available from ENCODE and GEO) to mouse and human rDNA assemblies, and found that several essential hematopoietic TFs such as MYC, MYB, RUNX1, PU.1, CEBPA and others bind to rDNA at conserved sites and motifs (Fig A). MYC is well-known as a master regulator of rDNA, and RUNX1 was recently reported to bind rDNA, but most of the others have never been linked to rDNA, and their functional roles in regulating rDNA transcription have not been explored. We picked for further study CEBPA, a crucial TF required for specification of granulocyte-monocyte progenitors (GMPs). For our experiments, we used the mouse HOXA9-ER cell line, which mimics GMPs. We used CRISPR/Cas9 and homologous recombination to fuse FKBPV degron into bi-allelic endogenous loci of the Cebpa gene in HOXA9-ER cells, and, upon addition of dTAG-13 (the ligand for FKBPV), the CEBPA-FKBPV fusion protein could be rapidly degraded within 2 hours (Fig B, C), providing us an experimental system to study the immediate consequences of CEBPA loss. In order to quantify the rate of rRNA transcription, we devised an assay titled "47S FISH-Flow" that combined fluorescent in-situ hybridization (FISH) using probes against nascent 47S rRNA with flow cytometry (Fig D, E). This assay not only allows us to quantify the rate of rRNA transcription on a per-cell basis in millions of cells, but also allows us to separately gate and quantify rRNA transcription in different stages of the cell cycle, eliminating a major confounder in bulk cell studies - cell cycle distribution. Using 47S FISH-Flow, we observed that degradation of CEBPA in the HOXA9-ER mouse GMP cell line led to decrease in synthesis of 47S rRNA within hours (Fig F) before any change in cell cycle or growth kinetics, and was followed by growth arrest in 24 hours. In summary, we show that several critical hematopoietic TFs show abundant, conserved binding to rDNA, and the depletion of CEBPA rapidly reduces nascent rRNA, indicating that it directly promotes rRNA transcription. Our results, and the tools and experimental systems we have developed, shed light on an important and largely unexplored aspect of hematopoietic biology: the regulation of rRNA transcription by a wide range of lineage-specific hematopoietic TFs. Figure Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
Karla Terrazas Falcon ◽  
Kristin Watt ◽  
Soma Dash ◽  
Annita Achilleos ◽  
Emma Moore ◽  
...  

Ribosomal RNA (rRNA) transcription by RNA Polymerase I (Pol I) is a critical rate-limiting step in ribosome biogenesis, which is essential for cell survival. Despite its global function, disruptions in ribosome biogenesis cause tissue-specific birth defects called ribosomopathies which frequently affect craniofacial development. Here, we present a cellular and molecular mechanism to explain the susceptibility of craniofacial development to disruptions in Pol I transcription. We show that Pol I subunits are highly expressed in the neuroepithelium and neural crest cells (NCC), which generate most of the craniofacial skeleton. High expression of Pol I subunits sustains elevated rRNA transcription in NCC progenitors, which supports their high tissue-specific levels of protein translation, but also makes NCC particulalry sensitive to rRNA synthesis defects. Underpinning these findings, NCC-specific deletion of Pol I subunits Polr1a, Polr1c, and associated factor Tcof1 in mice cell-autonomously diminishes rRNA synthesis, which causes an imbalance between rRNA and ribosomal proteins. This leads to increased ribosomal protein binding to Mdm2 and concomitantly diminished Mdm2 binding to p53. Consequently, p53 protein accumulates, resulting in NCC apoptosis and craniofacial anomalies. Furthermore, compound mutations in Pol I subunits and associated factors specifically exacerbates the craniofacial anomalies characteristic of the ribosomopathies Treacher Collins Syndrome and Acrofacial Dysostosis Cincinnati Type. Our novel results therefore demonstrate the dynamic spatiotemporal requirement for rRNA transcription during mammalian cranial NCC development and corresponding tissue-specific threshold sensitivities to disruptions in rRNA transcription in the pathogenesis of craniofacial congenital diseases.


2008 ◽  
Vol 36 (4) ◽  
pp. 619-624 ◽  
Author(s):  
Joanna L. Birch ◽  
Joost C.B.M. Zomerdijk

Transcription of the major ribosomal RNAs by Pol I (RNA polymerase I) is a key determinant of ribosome biogenesis, driving cell growth and proliferation in eukaryotes. Hundreds of copies of rRNA genes are present in each cell, and there is evidence that the cellular control of Pol I transcription involves adjustments to the number of rRNA genes actively engaged in transcription, as well as to the rate of transcription from each active gene. Chromatin structure is inextricably linked to rRNA gene activity, and the present review highlights recent advances in this area.


2020 ◽  
Author(s):  
Mohammad A.M. Ali ◽  
Javier A. Garcia-Vilas ◽  
Christopher R. Cromwell ◽  
Basil P. Hubbard ◽  
Michael J. Hendzel ◽  
...  

AbstractCell proliferation and survival require continuous ribosome biogenesis and protein synthesis. Genes encoding ribosomal RNA (rRNA) are physically located in a specialized substructure within the nucleus known as the nucleolus, which has a central role in the biogenesis of ribosomes. Matrix metalloproteinase-2 (MMP-2) was previously detected in the nucleus. However, its role there is elusive. Herein we report that MMP-2 resides within the nucleolus to regulate rRNA transcription. MMP-2 is enriched at the promoter region of rRNA gene repeats and its inhibition downregulates pre-rRNA transcription. The N-terminal tail of histone H3 is clipped by MMP-2 in the nucleolus and is associated with increased rRNA transcription. Knocking down/out MMP-2 or inhibiting its activity prevents histone H3 cleavage and reduces both rRNA transcription and cell proliferation. In addition to the known extracellular roles of MMP-2 in tumor growth, our data reveal an epigenetic mechanism whereby intranucleolar MMP-2 regulates cell proliferation through histone proteolysis and facilitation of rRNA transcription.


2020 ◽  
Vol 48 (5) ◽  
pp. 1917-1927
Author(s):  
Bruce A. Knutson ◽  
Rachel McNamar ◽  
Lawrence I. Rothblum

RNA polymerase I (Pol I) is the most specialized eukaryotic Pol. It is only responsible for the synthesis of pre-ribosomal RNA (rRNA), the precursor of 18S, 5.8S and 28S rRNA, the most abundant cellular RNA types. Aberrant Pol I transcription is observed in a wide variety of cancers and its down-regulation is associated with several genetic disorders. The regulation and mechanism of Pol I transcription is increasing in clarity given the numerous high-resolution Pol I structures that have helped bridge seminal genetic and biochemical findings in the field. Here, we review the multifunctional roles of an important TFIIF- and TFIIE-like subcomplex composed of the Pol I subunits A34.5 and A49 in yeast, and PAF49 and PAF53 in mammals. Recent analyses have revealed a dynamic interplay between this subcomplex at nearly every step of the Pol I transcription cycle in addition to new roles in chromatin traversal and the existence of a new helix-turn-helix (HTH) within the A49/PAF53 linker domain that expands its dynamic functions during the Pol I transcription process.


2021 ◽  
Author(s):  
Jonathan Delhermitte ◽  
Lionel Tafforeau ◽  
Sunny Sharma ◽  
Virginie Marchand ◽  
Ludivine Wacheul ◽  
...  

Ribosomes are essential nanomachines responsible for protein production. Although ribosomes are present in every living cell, ribosome biogenesis dysfunction diseases, called ribosomopathies, impact particular tissues specifically. Here, we evaluate the importance of the box C/D snoRNA-associated ribosomal RNA methyltransferase fibrillarin (Fbl) in the early embryonic development of Xenopus laevis. We report that in developing embryos, the neural plate, neural crest cells (NCCs), and NCC derivatives are rich in fbl transcripts. Fbl knockdown leads to striking morphological defects affecting the eyes and craniofacial skeleton, due to lack of NCC survival caused by massive p53-dependent apoptosis. Fbl is required for efficient pre-rRNA processing and 18S rRNA production, which explains the early developmental defects. Using RiboMethSeq, we systematically reinvestigated ribosomal RNA 2'-O methylation in X. laevis, confirming all 89 previously mapped sites and identifying 15 novel putative positions in 18S and 28S rRNA. Twenty-three positions, including 10 of the new ones, were validated orthogonally by low dNTP primer extension. Bioinformatic screening of the X. laevis transcriptome revealed candidate box C/D snoRNAs for all methylated positions. Mapping of 2'-O methylation at six developmental stages in individual embryos indicated a trend towards reduced methylation at specific positions during development. We conclude that fibrillarin knockdown in early Xenopus embryos causes reduced production of functional ribosomal subunits, thus impairing NCC formation and migration.


Cells ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 1098 ◽  
Author(s):  
Gaviraghi ◽  
Vivori ◽  
Tonon

The generation of new ribosomes is a coordinated process essential to sustain cell growth. As such, it is tightly regulated according to cell needs. As cancer cells require intense protein translation to ensure their enhanced growth rate, they exploit various mechanisms to boost ribosome biogenesis. In this review, we will summarize how oncogenes and tumor suppressors modulate the biosynthesis of the RNA component of ribosomes, starting from the description of well-characterized pathways that converge on ribosomal RNA transcription while including novel insights that reveal unexpected regulatory networks hacked by cancer cells to unleash ribosome production.


Blood ◽  
2007 ◽  
Vol 110 (5) ◽  
pp. 1458-1465 ◽  
Author(s):  
Karthik A. Ganapathi ◽  
Karyn M. Austin ◽  
Chung-Sheng Lee ◽  
Anusha Dias ◽  
Maggie M. Malsch ◽  
...  

Abstract Shwachman-Diamond syndrome (SDS) is an autosomal recessive disorder characterized by bone marrow failure, exocrine pancreatic dysfunction, and leukemia predisposition. Mutations in the SBDS gene are identified in most patients with SDS. SBDS encodes a highly conserved protein of unknown function. Data from SBDS orthologs suggest that SBDS may play a role in ribosome biogenesis or RNA processing. Human SBDS is enriched in the nucleolus, the major cellular site of ribosome biogenesis. Here we report that SBDS nucleolar localization is dependent on active rRNA transcription. Cells from patients with SDS or Diamond-Blackfan anemia are hypersensitive to low doses of actinomycin D, an inhibitor of rRNA transcription. The addition of wild-type SBDS complements the actinomycin D hypersensitivity of SDS patient cells. SBDS migrates together with the 60S large ribosomal subunit in sucrose gradients and coprecipitates with 28S ribosomal RNA (rRNA). Loss of SBDS is not associated with a discrete block in rRNA maturation or with decreased levels of the 60S ribosomal subunit. SBDS forms a protein complex with nucleophosmin, a multifunctional protein implicated in ribosome biogenesis and leukemogenesis. Our studies support the addition of SDS to the growing list of human bone marrow failure syndromes involving the ribosome.


Cells ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 534 ◽  
Author(s):  
Tamara Phan ◽  
Fatima Khalid ◽  
Sebastian Iben

The nucleolus organizes around the sites of transcription by RNA polymerase I (RNA Pol I). rDNA transcription by this enzyme is the key step of ribosome biogenesis and most of the assembly and maturation processes of the ribosome occur co-transcriptionally. Therefore, disturbances in rRNA transcription and processing translate to ribosomal malfunction. Nucleolar malfunction has recently been described in the classical progeria of childhood, Hutchinson–Gilford syndrome (HGPS), which is characterized by severe signs of premature aging, including atherosclerosis, alopecia, and osteoporosis. A deregulated ribosomal biogenesis with enlarged nucleoli is not only characteristic for HGPS patients, but it is also found in the fibroblasts of “normal” aging individuals. Cockayne syndrome (CS) is also characterized by signs of premature aging, including the loss of subcutaneous fat, alopecia, and cataracts. It has been shown that all genes in which a mutation causes CS, are involved in rDNA transcription by RNA Pol I. A disturbed ribosomal biogenesis affects mitochondria and translates into ribosomes with a reduced translational fidelity that causes endoplasmic reticulum (ER) stress and apoptosis. Therefore, it is speculated that disease-causing disturbances in the process of ribosomal biogenesis may be more common than hitherto anticipated.


Genes ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1412
Author(s):  
William J. Andrews ◽  
Swagat Ray ◽  
Tatiana Panova ◽  
Christoph Engel ◽  
Konstantin I. Panov

In eukaryotes, ribosome biogenesis is driven by the synthesis of the ribosomal RNA (rRNA) by RNA polymerase I (Pol-I) and is tightly linked to cell growth and proliferation. The 3D-structure of the rDNA promoter plays an important, yet not fully understood role in regulating rRNA synthesis. We hypothesized that DNA intercalators/groove binders could affect this structure and disrupt rRNA transcription. To test this hypothesis, we investigated the effect of a number of compounds on Pol-I transcription in vitro and in cells. We find that intercalators/groove binders are potent inhibitors of Pol-I specific transcription both in vitro and in cells, regardless of their specificity and the strength of its interaction with DNA. Importantly, the synthetic ability of Pol-I is unaffected, suggesting that these compounds are not targeting post-initiating events. Notably, the tested compounds have limited effect on transcription by Pol-II and III, demonstrating the hypersensitivity of Pol-I transcription. We propose that stability of pre-initiation complex and initiation are affected as result of altered 3D architecture of the rDNA promoter, which is well in line with the recently reported importance of biophysical rDNA promoter properties on initiation complex formation in the yeast system.


Sign in / Sign up

Export Citation Format

Share Document