scholarly journals Single-Cell RNA Sequencing Analysis Reveals Mechanisms of Initiation and Progression in Chronic Myelomonocytic Leukemia

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2588-2588
Author(s):  
Guillermo Montalban-Bravo ◽  
Feiyang Ma ◽  
Irene Ganan-Gomez ◽  
Rashmi Kanagal-Shamanna ◽  
Vera Adema ◽  
...  

Abstract Despite advances in the genetic characterization of chronic myelomonocytic leukemia (CMML), the molecular mechanisms that drive the disease during its distinct phases remain unclear. To uncover vulnerabilities in CMML that could be therapeutically targeted to halt its evolution, we sought to dissect at the single-cell level the cellular and transcriptomic changes that occur in the hematopoietic system at the time of CMML's initiation and its progression after hypomethylating agent (HMA) therapy. To evaluate the molecular mechanisms underlying CMML maintenance, we performed single-cell RNA sequencing (scRNA-seq) analysis of lineage-negative (Lin -)CD34 + hematopoietic stem and progenitor cells (HSPCs) and bone marrow (BM) mononuclear cells (MNCs) isolated from untreated CMML patients (n=5 and 6, respectively) and age-matched healthy donors (HDs; n=2 and 3, respectively). Our integrated analysis revealed that CMML Lin -CD34 + HSPCs had a predominant granulomonocytic differentiation route with an increased frequency of early and committed myeloid-monocytic progenitors at the expense of HSCs and megakaryocyte/erythroid progenitors (Fig. 1a). Differential expression analysis among the clusters revealed that most transcriptomic differences occurred in CMML HSCs, which were characterized by the upregulation of genes involved in oxidative phosphorylation, type I interferon (IFN) and IFNγ response, myeloid development, and inflammatory signaling and had downregulated expression of genes involved in TNFα-mediated NF-κB activation (Fig. 1b). These data suggest that CMML HSCs undergo metabolic reprogramming and demand a higher level of mitochondrial activity to maintain activated monocytic differentiation in response to inflammatory signaling. Consistent with these results, scRNA-seq analysis of MNCs isolated from the same HD and CMML BM samples showed that monocytes were significantly increased at the expense of erythroid precursors and B cells in CMML (Fig. 1c). CMML monocytes had upregulated genes involved in IFNγ response, oxidative phosphorylation, MYC targets, NF-κB activation, and inflammation (e.g., S100A9, CCL3, IL1B). Interestingly, among the anti-apoptotic BCL2 family members, only the NF-κB transcriptional target BCL2A1 was significantly overexpressed. To investigate the mechanisms of resistance to HMA therapy, we performed integrated scRNA-seq analysis of sequential Lin -CD34 + cells and BM MNCs isolated from CMML patients at the time of disease initiation and progression after HMA therapy failure. CMML progression was driven by a significant expansion of lympho-myeloid progenitors (LMPPs) at the expense of earlier HSCs , which exacerbated myelomonocytic differentiation in the HSPC compartment (Fig. 1d). Expanded LMPPs were characterized by higher levels of IFNγ response, NF-κB survival signaling, and cell cycle regulators. Accordingly, scRNA-seq analysis of MNCs cells from the same patients showed significantly increased frequencies of monocytes and a reduction of naïve CD4 +/CD8 + T cells and effector memory CD8 + T cells. Differential expression analysis of the 2 sample groups in the monocyte population identified five different cellular clusters, one of which emerged only at progression (Fig. 1e). This population was characterized by high expression levels of inflammatory cytokines and the anti-apoptotic modulators MCL1 and BCL2A1. Together, these data suggest that CMML progression arises from immature myeloid progenitors at the stem cell level and that downstream monocytes undergo transcriptomic rewiring and acquire survival mechanisms that induce therapy resistance and further accelerate disease progression. In conclusion, our results elucidate the differentiation hierarchies and transcriptional programs associated with CMML's initiation and its progression after HMA therapy. Our data suggest that therapies targeting downstream effectors of NF-kB-mediated survival signaling could overcome treatment failure. Figure 1 Figure 1. Disclosures Wei: Daiichi Sanko: Research Funding. Kantarjian: AbbVie: Honoraria, Research Funding; Immunogen: Research Funding; KAHR Medical Ltd: Honoraria; Jazz: Research Funding; Ipsen Pharmaceuticals: Honoraria; Astellas Health: Honoraria; NOVA Research: Honoraria; Pfizer: Honoraria, Research Funding; Novartis: Honoraria, Research Funding; Astra Zeneca: Honoraria; Ascentage: Research Funding; Aptitude Health: Honoraria; Daiichi-Sankyo: Research Funding; Amgen: Honoraria, Research Funding; BMS: Research Funding; Precision Biosciences: Honoraria; Taiho Pharmaceutical Canada: Honoraria.

2021 ◽  
Author(s):  
Stella Belonwu ◽  
Yaqiao Li ◽  
Daniel Bunis ◽  
Arjun Arkal Rao ◽  
Caroline Warly Solsberg ◽  
...  

Abstract Alzheimer’s Disease (AD) is a complex neurodegenerative disease that gravely affects patients and imposes an immense burden on caregivers. Apolipoprotein E4 (APOE4) has been identified as the most common genetic risk factor for AD, yet the molecular mechanisms connecting APOE4 to AD are not well understood. Past transcriptomic analyses in AD have revealed APOE genotype-specific transcriptomic differences; however, these differences have not been explored at a single-cell level. Here, we leverage the first two single-nucleus RNA sequencing AD datasets from human brain samples, including nearly 55,000 cells from the prefrontal and entorhinal cortices. We observed more global transcriptomic changes in APOE4 positive AD cells and identified differences across APOE genotypes primarily in glial cell types. Our findings highlight the differential transcriptomic perturbations of APOE isoforms at a single-cell level in AD pathogenesis and have implications for precision medicine development in the diagnosis and treatment of AD.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2381-2381
Author(s):  
Teresa Field ◽  
Janelle Perkins ◽  
Taiga Nishihori ◽  
Joseph Pidala ◽  
Hugo F. Fernandez ◽  
...  

Abstract Abstract 2381 Allogeneic hematopoietic cell transplantation (HCT) remains the only curative treatment strategy for patients with Myelodysplastic Syndrome (MDS) or Chronic Myelomonocytic Leukemia (CMML). Recent reduction of the transplant related toxicity has permitted the expansion of empiric age limitations for HCT up to 75 years. There has been limited comparative data on HCT focusing on donor availability in patients with MDS/CMML. Between January 2004 and September 2009, a total of 255 new patients (NP) with a diagnosis of MDS or CMML were evaluated for HCT at Moffitt Cancer Center. This report describes the outcomes of these patients with emphasis on donor availability. Donor Search Results: Of the 255 NP, 58 did not undergo a donor search. Reasons for not proceeding were as follows: Medicare declined coverage due to age >65 (18), waiting as have low risk disease (15), patient declined (6), patient seen as second opinion only (7) and patient was not eligible for HCT (12). These patients were not included in the survival analysis. Of the 197 patients who had a donor search initiated, a sibling (SIB) matched unrelated (MUD) or single HLA antigen/allele mismatch (mMUD) unrelated adult donor was found in 173 patients. A suitable adult donor was not identified in the remaining 24 patients. To mitigate bias due to factors giving a survival advantage to patients who were stable enough to survive the donor and proceed to HCT, the survival analysis included only those patients alive 90 days after the donor search was initiated. We have been able to identify donors within this time frame for 99% of the patients who ever found one, although time to transplant is longer. At the 90 days landmark, there were 164 patient in the Donor cohort, and 19 patients in the No Donor cohort. Donor Cohort: The median age was 56.6 yrs (18.5 – 73.5). Ninety-seven patients (59%) were older than 55 yrs and 26 (16%) were above 65 yrs. At the time of the transplant consult, IPSS risk was Low (10), Int-1 (44), Int-2 (48), High (25), AML (21), CMML (13), or not evaluable (NE) (3). Donors included SIB (60), MUD (75) and mMUD (29). Median follow-up of surviving patients is 27.7months (7.2 – 70.7). No Donor Cohort: Median age was 57.4 yrs (32.6 – 68.1) with 12 patients (63%) older than 55 yrs and 3 (16%) patients older than 65 years of age. IPSS at initiation of the donor search was Int-1 (5), Int-2 (6), High (5), AML (1) and CMML (2). Median follow-up is 9.2 months (1.4 – 61.5). Of the 19 patients with no donor, 3 patients received an umbilical cord blood HCT elsewhere and were analyzed by intent to treat. Outcomes: Patients with a donor had significantly improved overall survival from time of donor search vs. patients with no donor (P=0.007) with 2 year OS of 48% vs. 23%, respectively. Median survival for the donor group was 22.2 months [95% CI 14.7 – 35.7] vs. 10.1 months for those without a donor [95% CI 2.3 – 14.7]. Transplant: Of the 164 patients with a donor, 121 (74%) patients received the planned allogenic transplants. The 2-year overall survival (OS) after transplantation is similar for SIB (51%), MUD (39%) or mMUD (68%) transplant recipients (P=0.4), and also similar by age below or above 55 years (P=0.7). These data demonstrate that most patients with MDS or CMML can have a suitable donor identified and proceed to HCT. Overall survival is significantly improved for those patients who have a suitable sibling or unrelated donor. Disclosures: Lancet: Eisai: Consultancy; Celgene: Honoraria. Alsina: Millenium: Consultancy, Research Funding; Celgene: Research Funding; Novartis: Consultancy. List: Celgene: Research Funding.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4032-4032
Author(s):  
Elias Jabbour ◽  
Hagop M. Kantarjian ◽  
Farhad Ravandi ◽  
A. Megan Cornelison ◽  
Tapan Kadia ◽  
...  

Abstract Abstract 4032 Background: Chronic myelomonocytic leukemia (CMML) is a rare yet indolent disease. The median survival duration in CMML is 12 to 18 months and patients with poor prognostic features do even worse, with median survival time ranging 3 to 6 months. Activity with decitabine in CMML has been previously reported. We sought to analyze the clinical experience of 17 adults with a diagnosis of CMML treated on two decitabine studies. Methods: A subset of patients with CMML from a pivotal phase III 3-day dosing and an open-label trial of 5-day dosing were identified and reviewed to determine the overall response rate (ORR, based on IWG 2006 criteria), duration of response, time to response, and overall survival (OS). Results: A total of 17 patients with CMML were included in this review. Mean age at diagnosis was 71 years (range, 47 to 81 years) with a mean time from diagnosis of 406.4 days. The majority of CMML patients had de novo (94.1%), good risk cytogenetics (58.8%) with an IPSS classification of Intermediate-1 (64.7%). Baseline mean white blood count (WBC), hemoglobin (HGB), and platelets (plts) were 7.5 × 103/μ L, 14.6 g/dL and 81.9 × 103/μ L, respectively. A larger proportion of CMML patients at baseline were plt and RBC transfusion independent. Objective response rate (ORR) was 41% [17.6% complete response (CR) and 23.5% marrowCR (mCR)]; Hematologic improvement (HI) was observed in 11.7% and stable disease in 29.4% of patients. Median survival was 391 (95% CI 239, 678) days and 2 (11.7%) patients progressed to AML. The adverse event profile was similar to observations in previous trials with myelosuppression and infectious complications. Conclusions: This retrospective review of responses in CMML patients supports previous findings of decitabine experience in this population. In this analysis an overall response rate of 41.4% was achieved. Decitabine provided anti-CMML activity with an acceptable safety profile. Disclosures: Jabbour: Eisai Inc.: Editorial and statistical support from Eisai Inc., Honoraria. Kantarjian:Novartis: Research Funding; Pfizer: Research Funding; Bristol Myers Squibb: Research Funding; Novartis: Consultancy. Ravandi:Eisai Inc.: Research Funding; Eisai Inc.: Honoraria. Borthakur:Eisai Inc.: Research Funding. Cortes:Novartis: Research Funding; Pfizer: Consultancy, Research Funding; Bristol Myers Squibb: Research Funding.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4957-4957 ◽  
Author(s):  
Pierre Fenaux ◽  
Daniel J DeAngelo ◽  
Guillermo Garcia-Manero ◽  
Michael Lübbert ◽  
Anand P. Jillella ◽  
...  

Abstract Abstract 4957 Background: Panobinostat is a potent pan-deacetylase inhibitor (pan-DACi) that causes increased acetylation of target proteins such as HSP90, p53, α-tubulin and HIF-1α which are involved in cell cycle regulation, gene transcription, angiogenesis, and tumor cell survival. Preliminary evidence from phase I trials has demonstrated anti-tumor activity in patients with hematologic malignancies including myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). The advent of hypomethylating agents, such as 5-aza, represent a significant advancement in the treatment of MDS, chronic myelomonocytic leukemia (CMML), and AML. Although an improvement in clinical outcomes has been observed, including increased overall survival in patients with MDS, a substantial number of patients do not benefit from the therapies currently available. Preclinical studies suggest that the combination of a demethylating agent and a pan-DACi represents a rational strategy to reverse silencing of tumor suppressor genes, which contributes to the malignant phenotype, and improve outcomes in patients with MDS and AML. In this study, the combination of the pan-DACi, panobinostat, and the hypomethylating agent, 5-aza, was evaluated in patients with MDS, CMML and AML. Methods: This phase Ib, open-label, multicenter, dose-finding study is comprised of 2 stages: a dose-escalation stage to determine the maximum tolerated dose (MTD) of panobinostat in combination with standard dose 5-aza, and a subsequent expansion stage to evaluate safety, tolerability, and preliminary activity at the MTD dose level. The primary endpoint is incidence of dose-limiting toxicity (DLT) and secondary endpoints include type, duration, frequency, and relationship of adverse events (AEs) to the combination. Exploratory endpoints include clinical response and hematologic improvement according to IWG response criteria, and biomarker analysis of methylation status and expression of disease-associated genes in peripheral blood cells prior to and during therapy. Adult patients with IPSS INT-2 or high-risk MDS, CMML, or AML with multi-lineage dysplasia and ≤ 30% marrow blasts who are candidates for therapy with 5-aza and have not received a prior hypomethylating agent or pan-DACi are eligible for enrollment on the trial. Oral panobinostat was administered on Days (D) 3, 5, 8, 10, 12, and 15, starting at 20 mg, in combination with 5-aza (75 mg/m2 sc D 1–7) during a 28-D cycle. Patients received treatment for ≤ 6 cycles or until progression of disease, incidence of unacceptable toxicity, or withdrawal of consent. Results: To date, 11 patients have been enrolled including 9 patients with MDS, 1 patient with AML and 1 patient with CMML. The median age of patients enrolled on the trial was 69.0 (60-80). Patients have been evaluated at 2 panobinostat dose cohorts; 6 (20 mg) and 5 (30 mg). The AE analysis is based on 9 patients (6 from 20 mg cohort and 3 from 30 mg cohort) and the nature and incidence of AEs observed in the two cohorts were similar. Adverse events regardless of study drug relationship included nausea (4 [44%]), vomiting, fatigue (5 [55%] each) and asthenia (3 [33%]). Grade 3/4 AEs suspected to be treatment related included thrombocytopenia (2 [22%], febrile neutropenia and arthritis (1 [11%] each). Serious adverse events observed included febrile neutropenia, asthenia (2 [22%] each), atrial fibrillation and septic shock (1 [11%] each). One DLT has been observed (grade 4 febrile neutropenia) in the 20 mg panobinostat dose cohort. Conclusions: Panobinostat has been well tolerated up to a dose of 30 mg in combination with 5-aza (75 mg/m2) with dose escalation ongoing. Patients are currently being enrolled at the 40mg dose cohort. The most common AEs observed included febrile neutropenia, thrombocytopenia with one DLT observed (grade 4 febrile neutropenia) in the 20mg panobinostat dose cohort. The current data show that the addition of panobinostat to 5-aza is safe with no unexpected toxicities. Updated data, including safety and preliminary efficacy data will be presented at the meeting. Disclosures: Fenaux: Celgene: Honoraria, Research Funding; Novartis: Honoraria, Research Funding; Janssen Cilag: Honoraria, Research Funding; ROCHE: Honoraria, Research Funding; AMGEN: Honoraria, Research Funding; GSK: Honoraria, Research Funding; Merck: Honoraria, Research Funding; Cephalon: Honoraria, Research Funding. Off Label Use: Panobinostat is an investigational agent currently being evaluated for the treatment of hematologic and solid malignancies. DeAngelo: Novartis: Membership on an entity's Board of Directors or advisory committees. Sekeres: Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees. Winiger: Novartis Pharma AG: Employment. Squier: Novartis: Employment. Li: Novartis: Employment. Ottmann: Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2800-2800
Author(s):  
Emily J. Vannorsdall ◽  
Vu H. Duong ◽  
Xinyi Ng ◽  
Dan P. Zandberg ◽  
Michael L. Tidwell ◽  
...  

Abstract Abstract 2800 Background: Chronic myelomonocytic leukemia (CMML) is a clonal hematopoietic stem cell disorder categorized as a mixed myeloproliferative/myelodysplastic disorder in the World Health Organization classification system. Diagnostic criteria include a persistent peripheral blood monocytosis >1 × 109/L and bone marrow dysplasia. Our recent review of SEER Medicare data (ASH 2011 abstract 2784) demonstrated that CMML has a shorter overall survival (OS) and more frequent progression to acute myeloid leukemia (AML), compared to myelodysplastic syndromes (MDS). Due to the heterogeneity of this disease and its differences from MDS, efforts to identify prognostic factors have been ongoing. The MD Anderson prognostic score was previously validated, but was derived from patients treated prior to the availability of the hypomethylating agents (HMAs) azacitidine and decitabine. HMAs have now emerged as standard therapy, with reported response rates of 37–69%, but their impact on survival and AML transformation is unclear. The OS of CMML patients has been reported at 12–18 months and transformation rates have varied between 15–52%. We reviewed our own single-center experience with CMML over the past 12 years. Methods: We conducted a retrospective review of CMML patients evaluated at the University of Maryland Greenebaum Cancer Center between January 2000 and August 2012. Patient and disease characteristics, treatments, complications, progression to AML, and OS were recorded and analyzed. Descriptive statistics were used for baseline characteristics and Kaplan-Meier analysis was performed for all time-to-event data. Statistical analyses were performed using SPSS version 20.0. Results: We identified 35 patients with CMML, 71% were male and 71% white, with a median age of 69 (range 34–86) years; 75% had <10% bone marrow (BM) blasts and 68% had low-risk cytogenetic findings (normal karyotype or -Y). Most patients treated prior to 2005 received hydroxyurea and/or erythropoiesis-stimulating agents or were enrolled on clinical trials, while patients treated since 2005 received HMAs as primary therapy. The median OS of the entire cohort was 19.5 months, with 49% of patients progressing to AML with a median time to progression (TTP) of 16.9 months. Of the entire cohort, patients with <10% and ≥10% BM blasts had an estimated OS of 19.4 and 11.7 months respectively (p=.021). Patients with low-, intermediate-, and high-risk (complex karyotype, +8, or chromosome 7 abnormalities) cytogenetic findings had an estimated OS of 23.3, 16.5, and 12.0 months respectively (p<0.001). Twenty-two patients received HMAs. Their estimated OS was 16.5 months, compared to 23.0 months for patients who did not receive HMAs (p =.683); 50% of patients treated with HMAs had known progression to AML, with TTP varying from 3–28 months. AML-free-survival was 16 months in patients receiving HMAs, compared to 14 months in patients not treated with HMAs (p=0.960). The majority of patients receiving HMA therapy (63%) were treated with ≥ 6 cycles; 57% of these patients transformed to AML despite initial response, often in a sudden and unpredictable manner. Conclusions: Published trials using HMAs in CMML have been limited by small patient numbers, short median follow-up, and paucity of data on AML transformation. Our study had a median follow-up period of 41.1 months. We found a high rate of AML transformation and short OS even in patients who received HMAs. HMA treatment had no statistically significant impact on AML-free survival or OS. Although the results may be confounded by some selection bias, treatment with HMAs was largely based on the date of diagnosis rather than prognostic variables or performance status. Therefore, the favorable response rates previously reported with these agents, and also seen in our patients, do not appear to translate into an OS or AML-free-survival advantage. Our study underscores the continued need for novel agents and the need to prioritize clinical trials for this group of patients. Additionally, based on our data, early bone marrow transplantation should be strongly considered for CMML patients when feasible. Disclosures: Davidoff: Novartis: Research Funding; Celgene: Research Funding; GlaskoSmithKline: Research Funding. Baer:Novartis, Inc.: Research Funding; Celgene, Inc.: Research Funding.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 5223-5223
Author(s):  
Jamshid S Khorashad ◽  
Srinivas K Tantravahi ◽  
Dongqing Yan ◽  
Anna M. Eiring ◽  
Hannah M. Redwine ◽  
...  

Abstract Introduction. Development of abnormal Philadelphia (Ph) negative clones following treatment of chronic myeloid leukemia (CML) patients with imatinib has been observed in 3 to 9% of patients. Here we report on a 77 year old male diagnosed with CML that responded to imatinib treatment and subsequently developed chronic myelomonocytic leukemia (CMML). He achieved major cytogenetic response within 3 months but this response coincided with the emergence of monocytosis diagnosed as CMML. Five months after starting imatinib treatment the patient succumbed to CMML. We analyzed five sequential samples to determine whether a chronological order of mutations defined the emergence of CMML and to characterize the clonal evolution of the CMML population. Materials and Method. Five samples (diagnostic and four follow up samples) were available for analysis. CMML mutations were identified by whole exome sequencing (WES) in CD14+ cells following the onset of CMML, using CD3+ cells as constitutional control. Mutations were validated by Sequenom MassARRAY and Sanger sequencing and quantified by pyrosequencing. Deep WES was performed on the diagnostic sample to determine whether the mutations were present at CML diagnosis. To determine the clonal architecture of the emerging CMML, colony formation assays were performed on the diagnostic and the next two follow-up samples (Samples 1-3). More than 100 colonies per sample were plucked for DNA and RNA isolation. The DNA from these colonies were tested for the presence of the confirmed CMML mutations and the RNA was used for detection of BCR-ABL1 transcript using a Taqman real time assay. Results. Four mutations were identified by Sequenom and WES throughout the patient's time course [KRASG12R, MSLNP462H, NTRK3V443I and EZH2I669M ]. Sequenom did not identify these at diagnosis while deep WES did. Clones derived from colony formation assay revealed three distinct clones present in all samples analysed. Clone 1 had only KRASG12R, clone 2 had KRASG12R, MSLNP462H, and NTRK3V443I, and clone 3 had all four mutations. All clones containing any of these four mutations were BCR/ABL1 negative. Analysis of clonal architecture indicated that KRASG12R was acquired first and EZH2I669M last, while MSLNP462H and NTRK3V443I were acquired in between. These CMML clones increased proportionately as clinical CML metamorphosed into clinical CMML after initiation of imatinib therapy. Consistent with the colony data, pyrosequencing revealed that the ratio between the mutants remained largely stable throughout the follow up period. Conclusion. This case illustrates how targeted therapy impacts clonal competition in a heterogeneous MPN. While the CML clone was dominant in the absence of imatinib, it was quickly outcompeted by the CMML clones upon initiation of imatinib therapy. The clonal architecture analysis, in combination with in vivo kinetics data, suggest that the KRASG12R mutation alone was able to produce a CMML phenotype as clones with just KRASG12R remained at a relatively stable ratio during follow up. Unexpectedly, acquisition of additional mutations, including EZH2I669M as the last mutational event identified in this patient, did not increase clonal competitiveness, at least in the peripheral blood. These data show that clonal evolution may not invariably increase clonal fitness, suggesting that factors other than Darwinian pressures contribute to clonal diversity in myeloproliferative neoplasms. Disclosures Deininger: Gilead: Research Funding; Bristol-Myers Squibb: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Pfizer: Consultancy, Membership on an entity's Board of Directors or advisory committees; Incyte: Consultancy, Membership on an entity's Board of Directors or advisory committees; Ariad: Consultancy, Membership on an entity's Board of Directors or advisory committees.


2012 ◽  
Vol 30 (15_suppl) ◽  
pp. 10539-10539 ◽  
Author(s):  
Yu-Chieh Wang ◽  
Daniel Ramskold ◽  
Shujun Luo ◽  
Robin Li ◽  
Qiaolin Deng ◽  
...  

10539 Background: Melanoma is the most aggressive type of skin cancer. Late-stage melanoma is highly metastatic and currently lacks effective treatment. This discouraging clinical observation highlights the need for a better understanding of the molecular mechanisms underlying melanoma initiation and progression and for developing new therapeutic approaches based on novel targets. Although genome-wide transcriptome analyses have been frequently used to study molecular alterations in clinical samples, it has been technically challenging to obtain the transcriptomic profiles at single-cell level. Methods: Using antibody-mediated magnetic activated cell separation (MACS), we isolated and individualized putative circulating melanoma cells (CMCs) from the blood samples of the melanoma patients at advance stages. The transcriptomic analysis based on a novel and robust mRNA-Seq protocol (Smart-Seq) was established and applied to the putative CMCs for single-cell profiling. Results: We have discovered distinct gene expression patterns, including new putative markers for CMCs. Meanwhile, the gene expression profiles derived of the CMC candidates isolated from the patient’s blood samples are closely-related to the expression profiles of other cells originated from human melanocytes, including normal melanocytes in primary culture and melanoma cell lines. Compared with existing methods, Smart-Seq has improved read coverage across transcripts, which provides advantage for better analyzing transcript isoforms and SNPs. Conclusions: Our results suggest that the techniques developed in this research for cell isolation and transcriptomic analyses can potentially be used for addressing many biological and clinical questions requiring genomewide transcriptome profiling in rare cells.


1999 ◽  
Vol 92 (1) ◽  
pp. 111-117 ◽  
Author(s):  
Y. Pae ◽  
H. Minagawa ◽  
J. Hayashi ◽  
S. Kashiwagi ◽  
Y. Yanagi

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 326-326
Author(s):  
David T. Melnekoff ◽  
Yogita Ghodke-Puranik ◽  
Oliver Van Oekelen ◽  
Adolfo Aleman ◽  
Bhaskar Upadhyaya ◽  
...  

Abstract Background: BCMA CAR-T cell therapy has shown great promise in relapsed/refractory multiple myeloma (RRMM) patients, even though there is unpredictable variability in the duration and depth of response. The mechanisms behind these divergent outcomes and relapse are not well understood and heterogeneity of MM patients at the level of both tumor genomics and tumor microenvironment (TME) likely contributes to this important knowledge gap. To explore this question, we performed a longitudinal high resolution single cell genomic and proteomic analysis of bone marrow (BM) and peripheral blood (PB) samples in MM patients treated with BCMA CAR-T. Methods: Longitudinal comprehensive immune phenotyping of 3.5 million peripheral blood mononuclear cells (PBMC, CD45+CD66b-) from 11 BCMA CAR-T (idecabtagene vicleucel, ide-cel) patients was achieved via mass cytometry (CyTOF) with a panel of 39 markers. In addition, a total of 45,161 bone marrow mononuclear cells (BMMC) were analyzed from 6 patients before initiation of ide-cel therapy and at relapse by unbiased mRNA profiling via single-cell RNA-seq (scRNA-seq) using the GemCode system (10x Genomics). Downstream analysis was performed using the CATALYST and Seurat R packages, respectively. Immune cell populations are reported as % of PBMC and CD138- BMMC respectively, unless noted otherwise. Reported p values correspond to non-parametric tests or paired t test where applicable. Results: We compared baseline immune cell populations in the PB and the TME (BM) with regards to depth of CAR-T response. In PB, good responders (≥VGPR) had a higher proportion of CD8+ T cells (37% in good vs 11% in poor responders (&lt;VGPR), p=0.08) and a lower proportion of CD14+ monocytes (30% vs 61%, p=0.28) and NK cells (2% vs 6%, p=0.08). In the TME, a similar trend was confirmed for CD8+ T cells and CD14+ monocytes. (Fig. 1A) Longitudinal analysis of PBMCs revealed phenotypic changes coinciding with CAR-T expansion; CD14+ monocytes declined from week 0 to week 4 after CAR-T infusion (40% vs 13%, p=0.04), while (non-CAR) CD8+ T cells expanded from week 0 to week 4 (32% vs 43%, p=0.15). The non-CAR CD8+ T cell expansion is characterized by differentiation towards a CD8+ effector-memory phenotype (EM, CCR7-CD45RA-) (73% vs 92% of CD8+ T cells, p=0.005). (Fig. 1B) BM samples at CAR-T relapse showed reversal of this shift: CD14+ monocyte levels remain constant or are slightly elevated, while non-CAR CD8+ T cells decrease at relapse. scRNA-seq of BMMC revealed significant gene expression changes between screening and relapse tumor samples, suggesting tumor-intrinsic factors of CAR-T response. For example, when comparing the pre and post tumor samples of a patient with durable response (PFS 652 days), we observed a significant upregulation of gene expression of pro-inflammatory chemokines (CCL3, CCL4), anti-apoptotic genes (MCL-1, FOSB, JUND), and NF-kB signaling genes (NFKBIA) in post tumor. Gene Set Enrichment Analysis (GSEA) of differentially expressed genes showed significant enrichment for TNFA signaling via NF-kB Hallmark Pathway (p.adj = 0.04). We observed similar statistically significant findings between other screening and relapse samples within our cohort, as well as upon comparison of baseline samples of poor vs good responders. (Fig. 1C, D) Thus, our data suggest that anti-apoptotic gene expression could be one of the tumor intrinsic mechanisms of CAR-T therapy resistance. Notably, we did not observe loss of BCMA expression in any tumor samples. Conclusion: Single cell immune profiling and transcriptomic sequencing highlights changes in the PB, TME and within the tumor, which in concert may influence CAR-T efficacy. Our integrated data analysis indicates general immune activation after CAR-T cell infusion that returns to baseline levels at relapse. Specifically, the expansion of non-CAR cytotoxic CD8+ EM T cells provides a rationale for co-administration of IMiDs to enhance CAR-T efficacy. Significant up-regulation of anti-apoptotic genes at baseline in poor responders, and at relapse in good responders, suggest a novel tumor-mediated escape mechanism. Targeting the MCL-1/BCL-2 axis may augment CAR-T efficacy by sensitizing tumor cells and enhancing the effect of CAR-T killing. We will confirm these findings in a longitudinal cohort of BMMC/PBMC CITE-seq patients (n=23) and will present results at the conference. Figure 1 Figure 1. Disclosures Sebra: Sema4: Current Employment. Parekh: Foundation Medicine Inc: Consultancy; Amgen: Research Funding; PFIZER: Research Funding; CELGENE: Research Funding; Karyopharm Inv: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document