scholarly journals 16p Deletion Involving BCMA Locus Is Frequent and Predominantly Observed with del17p

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1590-1590
Author(s):  
Mehmet K. Samur ◽  
Anil Aktas-Samur ◽  
Romain Lannes ◽  
Jill Corre ◽  
Anjan Thakurta ◽  
...  

Abstract New generation immunotherapies in Multiple Myeloma (MM) targeting BCMA, have shown remarkable clinical benefits. However relapse still occurs due to tumor intrinsic and extrisic resistance mechanisms including antigen loss related to mutation, deletion and splicing pattern changes. Two recent case reports including ours highlighted biallelic loss of BCMA as a cause for resistance to anti-BCMA targeting therapy. In both studies BCMA locus at 16p was deleted bringing in focus importance of del16p. Here, we have evaluated 2883 MM patients at diagnosis and relapse to understand frequency characteristics of somatic events targeting BCMA. We first evaluated the frequency of deletion involving the BCMA locus (16p13.13) in MM patients from multiple studies using WGS sequencing data as well as using Affymetrix Cytoscan HD and SNP 6.0 arrays. We observed del16p in 8.58 % (7.6% to 14.6% in individual studies) of newly-diagnosed patients (n=2458). Similar frequency was observed in relapsed MM patients not previously exposed to BCMA targeting therapy. Next, we evaluated genome wide copy number alterations (CNAs) in all patients with loss of BCMA locus and observed similar frequency of loss in both hyperdiploid MM (HMM) and non-HMM suggesting its independence from cytogentic subtypes of MM. Overall copy number loss was significantly higher in patients with BCMA loss compared to rest of the MM patients. Patients with loss of BCMA locus have increased mutational load (8202 with 95% HDI 6921 and 9535) compared to those without BCMA locus loss (6975 with 95% HDI 6626 - 7343); probability of difference greater than 0 was 96.8% and difference of the means were 1222 [95% CI -112 - 2589] We next evaluated co-occurrence of BCMA loss with other high risk events and observed del1p and del17p as being significantly associated with loss of BCMA locus [Odds ratio 19.37 (13.13-25.80), FDR = 1.57e-65; and 8.8 (6.39-12.15), FDR = 5.57E-39, respectively)]. Furthermore, we observed that when both BCMA and TP53 loss are present, they have same log ratio (sequencing) or smoothed copy numbers (SNP array). Similarly, we used CDKN2C as a proxy to chromosome 1p loss and observed that when both BCMA and CKDN2C loss are present in the same patient they tend to show similar copy number values. These data suggested a possibility of co-occurrence of these events in the same cell. To further investigate this observation, we used single cell DNA sequencing data from patients with sub clonal and clonal BCMA locus loss. scDNA sequencing showed that almost all cells with BCMA deletion also had TP53 deletion (95%). Interestingly, almost all cells with BCMA loss also had p53 loss, while not all cells with p53 loss had BCMA loss suggesting that the chronology of this copy number alternation may suggest first p53 loss followed by BCMA loss. We further investigated whether a bi-allelic BCMA loss was observed after anti-BCMA targeted CAR-T cell therapy by imputing the copy number alterations using single cell RNA sequencing data. Our data from this case also indicated that BCMA loss tend to co-occur with TP53 deletions (OR=5.67 [95% CI 4.12-7.84], p value < 0.0001). Moreover, TP53 mutations were also more frequent in patients with del16p and del17p, compared to patients who only had del16p or del17p. In summary, our data from large scale copy number profiles at the diagnosis and relapse showed that monoallelic BCMA deletions are frequent events, patients with these events show increased aneuploidy, mostly deletions, potentially making these cells vulnerable for biallelic loss of genes, especially under the pressure of targeted therapy. Our results also highlight that BCMA expressions in bulk sample may not detect the presence or absence of cells with target loss and therefore combining strategies at bulk and single cell level are necessary to understand the disease status. These results suggest the need to study del16p in patients being targeted for BCMA-directed therapy and its association with other risk factors in MM. Disclosures Thakurta: Bristol Myers Squibb: Current Employment, Current equity holder in publicly-traded company. Anderson: Celgene: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees; Gilead: Membership on an entity's Board of Directors or advisory committees; Sanofi-Aventis: Membership on an entity's Board of Directors or advisory committees; Millenium-Takeda: Membership on an entity's Board of Directors or advisory committees; Bristol Myers Squibb: Membership on an entity's Board of Directors or advisory committees; Pfizer: Membership on an entity's Board of Directors or advisory committees; Scientific Founder of Oncopep and C4 Therapeutics: Current equity holder in publicly-traded company, Current holder of individual stocks in a privately-held company; AstraZeneca: Membership on an entity's Board of Directors or advisory committees; Mana Therapeutics: Membership on an entity's Board of Directors or advisory committees. Munshi: Takeda: Consultancy; Adaptive Biotechnology: Consultancy; Amgen: Consultancy; Karyopharm: Consultancy; Celgene: Consultancy; Abbvie: Consultancy; Oncopep: Consultancy, Current equity holder in publicly-traded company, Other: scientific founder, Patents & Royalties; Novartis: Consultancy; Legend: Consultancy; Pfizer: Consultancy; Janssen: Consultancy; Bristol-Myers Squibb: Consultancy.

Author(s):  
Jack Kuipers ◽  
Mustafa Anıl Tuncel ◽  
Pedro Ferreira ◽  
Katharina Jahn ◽  
Niko Beerenwinkel

Copy number alterations are driving forces of tumour development and the emergence of intra-tumour heterogeneity. A comprehensive picture of these genomic aberrations is therefore essential for the development of personalised and precise cancer diagnostics and therapies. Single-cell sequencing offers the highest resolution for copy number profiling down to the level of individual cells. Recent high-throughput protocols allow for the processing of hundreds of cells through shallow whole-genome DNA sequencing. The resulting low read-depth data poses substantial statistical and computational challenges to the identification of copy number alterations. We developed SCICoNE, a statistical model and MCMC algorithm tailored to single-cell copy number profiling from shallow whole-genome DNA sequencing data. SCICoNE reconstructs the history of copy number events in the tumour and uses these evolutionary relationships to identify the copy number profiles of the individual cells. We show the accuracy of this approach in evaluations on simulated data and demonstrate its practicability in applications to a xenograft breast cancer sample.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2676-2676
Author(s):  
Parvathi Sudha ◽  
Aarif Ahsan ◽  
Akhil Khera ◽  
Mohammad H Kazeroun ◽  
Tasneem Kausar ◽  
...  

Abstract Introduction: Multiple myeloma (MM) is a genetically heterogeneous disease where risk stratification and outcomes are associated with translocations involving the immunoglobulin (Ig) loci and MYC, copy number abnormalities including gain(1q), del(1p), and del(17p), as well as mutations. Additionally, MM tumors may harbor rare mutations in genes that are targetable in other tumors, such as in IDH1 and IDH2. Therefore, we designed a comprehensive MM targeted sequencing panel to interrogate the common genomic abnormalities in MM and validated it against known standards. Methods: The targeted panel was designed to include the exons of 228 genes which are either frequently mutated, associated with prognosis or risk stratification, clinically actionable, or sites of important copy number abnormalities. Additional targets were added across the genome to identify hyperdiploidy. These targeted regions encompass the mutation detection part of the panel and involve approximately 990 kb. The Ig loci and region surrounding MYC were tiled to capture translocations and copy number changes. In total, this translocation part of the panel involves approximately 4.7 Mb. The mutation and translocation panels are manufactured separately and combined during the assay resulting in a 5:1 sequencing ratio, respectively, which prevents over-sequencing of the large translocation panel. 100 ng DNA extracted from CD138+ bone marrow cells (n=223) and from non-tumor tissue (peripheral blood or saliva) was processed using the HyperCap workflow (KAPA Biosystems). Of the 223, 48 samples were processed in a clinical diagnostic laboratory. Adapter ligated DNA was hybridized with a mixture of the mutation and translocation panel and purified, amplified libraries were sequenced using 75 bp paired end reads. Sequences were aligned to hg19 and mutations and translocations identified using Strelka and Manta. Copy number was determined using the ratio of non-tumor to tumor reads in each targeted region. Data were validated using clinical FISH (translocations, n=116), MLPA (copy number, n=101), known standards (mutations), ddPCR (mutations), and whole genome sequencing (WGS; translocations and copy number, n=122). Results: Canonical IgH translocations were detected in 43.2% of patients by the panel, and all agreed with WGS. FISH detected one additional "variant" t(4;14), but did not detect 4 translocations detected by both sequencing methods. In the remainder of the samples no canonical IgH translocation was detected, agreeing with FISH results. Non-canonical translocations were detected in 14.5% of samples, 43% of which were to the MYC locus. MYC translocations were detected in 37.3% of samples with copy number abnormalities occurring surrounding MYC in 32.7% of samples. Overall, MYC abnormalities were detected in 46.4% of samples. Copy number was determined by panel sequencing and MLPA for 22 regions that were directly comparable between the technologies in 101 patient samples and 13 myeloma cell lines. The copy number concordance between the technologies was 96.9% and 99.6% in patient samples and cell lines, respectively. For the important prognostic regions, the concordance was R 2=0.962 (CDKN2C), R 2=0.986 (CKS1B), and R 2=0.973 (TP53). Panel copy number data were also compared to WGS data and showed complete concordance across the three prognostic regions, which the exception of 2 samples. In these 2 samples a homozygous deletion was detected by the panel but not by WGS. The deletions were 6.2 and 8.0 kb in size, one encompassing the coding sequencing of TP53 and the other exons 1-4 of TP53. A larger homozygous deletion of 36.3 kb was detected by both sequencing methods. Mutation detection validation was performed using Horizon Discovery samples with known variant allele frequencies (VAF) for common mutations. We were able to determine the sequencing VAF for 74 mutations across 5 samples which had a concordance of R 2=0.9849 between the expected and observed frequencies. The minimum detected VAF was 1.3% at an average depth of 891x. We also performed ddPCR on 6 patient samples with the common KRAS, NRAS and BRAF mutations which resulted in a VAF concordance of R 2=0.9983. Conclusion: We have developed a targeted sequencing panel for MM patient samples that is as robust or better than both FISH and WGS. A full protocol for sample processing and analysis is available, and has been used in a clinical diagnostic laboratory. Disclosures Ahsan: Bristol Myers Squibb: Current Employment, Current equity holder in publicly-traded company. Abu Zaid: Pieris: Current equity holder in publicly-traded company; Incyte: Research Funding; Pharamcyclic: Research Funding; Syndax: Consultancy, Research Funding. Ramasamy: Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Travel, Conference registration, Research Funding; Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Travel, Conference registration, Research Funding; Takeda: Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Travel, Conference registration, Research Funding; Celgene (BMS): Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Travel, Conference registration, Research Funding; GSK: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Oncopeptides: Honoraria, Membership on an entity's Board of Directors or advisory committees; Adaptive biotech: Honoraria, Membership on an entity's Board of Directors or advisory committees; Karyopharm: Honoraria, Membership on an entity's Board of Directors or advisory committees; Pfizer oncology: Honoraria, Membership on an entity's Board of Directors or advisory committees; Sanofi: Honoraria, Membership on an entity's Board of Directors or advisory committees. Yong: GSK: Honoraria; Amgen: Honoraria; BMS: Research Funding; Sanofi: Honoraria, Research Funding; Takeda: Honoraria; Autolus: Research Funding; Janssen: Honoraria, Research Funding. Morgan: Takeda: Honoraria. Abonour: Celgene-BMS: Membership on an entity's Board of Directors or advisory committees, Research Funding; Takeda: Research Funding; Jensen: Honoraria, Research Funding; GSK: Consultancy, Honoraria, Research Funding. Flynt: Bristol Myers Squibb: Current Employment. Ansari-Pour: Bristol Myers Squibb: Consultancy. Gooding: Bristol Myers Squibb: Research Funding. Thakurta: Bristol Myers Squibb: Current Employment, Current equity holder in publicly-traded company. Walker: Bristol Myers Squibb: Research Funding; Sanofi: Speakers Bureau.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3171-3171
Author(s):  
Anil Aktas Samur ◽  
Mehmet Kemal Samur ◽  
Stephane Minvielle ◽  
Florence Magrangeas ◽  
Masood A. Shammas ◽  
...  

Abstract Multiple Myeloma (MM) is characterized by genomic heterogeneity with copy number alterations (CNA) as one of the most prominent genomic perturbation. Hyperdiploidy involving chromosomes 3,5,7,9,11,15,19, and 21 is observed in nearly half of the patients, however the chronological sequence of their occurrence during MM development remains unknown. Here, we have acquired one of the largest genomic datasets from 647 patients that combines data from monoclonal gammopathy of undermined significance (MGUS) to newly diagnosed MM (336 newly diagnosed MM, 147 smoldering MM (SMM) and 164 MGUS) to characterize when and in what sequence CNA occurs in MM development. We deduce the order of CNA events by identifying their pattern of clonality basically inferring that clonal genomic change suggest its origin at an earlier stage of the disease. In hyperdiploid MM (HMM), gains in chromosome 19 (95%), 15 (90%) and 9 (90%) are the most frequent events, followed by gains in 5,11,3,7 and 21. Based on the clonality assessment the gain of chromosome 15 is the first and most frequent clonal/near clonal event, observed in 95% of HMM patients followed by Chromosome 9. Surprisingly, although chromosome 19 gain is the most frequent event overall, its clonal occurrence was lower than clonal chromosome 15 gain. More than 96% of HMM samples had concurrent gains in at least 2 of the 3 most frequent chromosomes (9,15 and 19). Moreover, less frequent events such as chromosome 21 gain, 18p gain, and 1q gain showed higher frequency of clonal/near clonal occurrence compared to other events indicating that when these events occur they are early events. Majority of the deletions occur as late subclonal events with few or none observed as clonal events. In the nonhyperdiploid MM (NHMM), del13, gain of 1q and gain of 11 had the highest frequency of clonal occurrence. Most were clonal events signifying its importance in the early stages of the disease. As all MM originates from its precursor conditions, MGUS and SMM, clonal and likely early CNAs in MM, must also exist in MGUS and SMM. So, we next investigated genomic data from SMM and MGUS for the occurrence of clonal events observed in MM. We confirmed same patterns for top MM-related CNA events in SMM and MGUS and observed no significant difference (p=0.1) between the number of events in hyperdiploid groups in MM (median=10, IQR= [8-12]) and SMM (median=9, IQR= [7-11]).To further confirm the analysis, we calculated an average clonality score for each chromosomal alteration using a 1 to 5 clonality index (1 being clonal 5 being low subclonal) in MM, SMM and MGUS and observed that similar clonal trisomies median=5, IQR=[4-6] are observed in both HMM and hyperdiploid MGUS; and that not all trisomies are required or occur at the same time. With occurrence in over 96% of cases trisomy involving chromosome 15 is central to the development of MGUS and later on MM. This is closely followed by trisomy of 9, and 19. Gain of chromosome 21 is also an early event. Major events like deletion 13 and 1q gain occur relatively later than first hyperdiploid events. NHMM on the other hand is well known to have clonal IgH-associated translocation as an initiating feature which is also observed in SMM and MGUS. However, different from HMM, it shows only few CNAs at an early stage and does not accumulate frequent additional alterations. The only exception to this rule is a deletion group observed in HMM, NHMM and SMM but not MGUS. In this deletion in over 10 whole chromosome or its p or q arm are involved as subclonal events. Its absence in MGUS suggests them to be a later event in MM development. On the other hand, number of deletions are observed at the same locations in both hyperdiploid and non-hyperdiploid groups with similar frequency. Moreover, similarity of events in this deletion groups strongly suggest that in sub group of both HMM and NHMM a similar process may be operative to induce such deletions. Our results also highlight that for both HMM and NHMM groups the major copy number events are not adequate for eventual malignant transformation since only a small fraction of MGUS patients progress to MM. Here, we describe the time line of initial copy number alterations observed in MM and confirm their early occurrence using data from a unique early stage plasma cell cases. Similarities between stages show that large scale DNA alterations happen early however some copy number hotspots are enriched over the time which could be important for disease progression. Disclosures Moreau: Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees; Takeda: Honoraria, Membership on an entity's Board of Directors or advisory committees; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees; Abbvie: Honoraria, Membership on an entity's Board of Directors or advisory committees; Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees. Anderson:Bristol Myers Squibb: Consultancy; C4 Therapeutics: Equity Ownership, Other: Scientific founder; Gilead: Membership on an entity's Board of Directors or advisory committees; OncoPep: Equity Ownership, Other: Scientific founder; Millennium Takeda: Consultancy; Celgene: Consultancy. Munshi:OncoPep: Other: Board of director.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4151-4151 ◽  
Author(s):  
Preetesh Jain ◽  
Rashmi Kanagal-Shamanna ◽  
Shaojun Zhang ◽  
Chi Young Ok ◽  
Makhdum Ahmed ◽  
...  

Abstract Introduction: Acalabrutinib is a Bruton tyrosine kinase (BTK) inhibitor approved for treatment of relapsed patients (pts) with mantle cell lymphoma. We have reported previously that ibrutinib refractory MCL pts have poor survival. However, outcomes, causes of discontinuation, management and the genomic landscape of MCL in pts who discontinued acalabrutinib are rarely reported. Method: We reviewed charts from all MCL pts treated with single agent acalabrutinib (n=28) in the relapsed setting and identified 15 pts who discontinued acalabrutinib and who are described in this analysis. Outcome after discontinuing acalabrutinib is reported. Whole-exome sequencing (WES) with SureSelect Human All Exon V6 was performed on 10 tumor specimens and 5 matched germline samples collected from 9 pts whose MCL progressed on acalabrutinib; among these pts 4 tumors were collected at baseline and 6 were collected after disease progression. One patient had sufficient DNAs available for both time points (baseline and progression). Results: The median duration on treatment with acalabrutinib was 6.5 months (1 to 29 months) and the median number of cycles of acalabrutinib treatment was 6 (range, 1-30). Seven pts had complete remission (CR) as their best response on acalabrutinib, 5 were primary refractory and 3 achieved partial remission. In 12 pts (80%) acalabrutinib was discontinued due to disease progression (2 pts transformed from classic to blastoid and pleomorphic type at progression) and 3 pts were discontinued due to intolerance (one for fatigue and idiopathic encephalopathy, one due to unrelated severe aortic stenosis and another for cytopenias secondary to therapy related myelodysplasia; all three pts were in CR). Nine pts had classic and 3 pts each had blastoid or pleomorphic features before starting acalabrutinib. Overall, median Ki-67 expression was 50% (range, 5-100) and all pts had high a MIPI score. The median number of prior treatments was 1 (range, 1-3); all chemo-immunotherapy (10 pts were previously treated with rituximab-hyper-CVAD) and none with ibrutinib. Two pts who transformed on acalabrutinib received acalabrutinib for a median duration of 12 months (range, 8-16.5). Median follow up after discontinuation was 27 months and the median survival was 25 months (26 months for progression and 1.5 months for intolerance; p <0.001, Figure-1A). Patients who discontinued due to intolerance did not get subsequent treatment for MCL. Among the 12 pts who progressed on acalabrutinib, 11 pts received systemic therapy for MCL [seven received ibrutinib based therapies (2 non responders, 3 achieved CR and 2 were PR and all pts progressed subsequently), 3 got chemo-immunotherapy and progressed and one pt did not receive any treatment and was lost to follow up and died. Six patients received a clinical trial with CAR-T cells (results will be reported separately). Overall, at the time of last follow up, 8 pts were alive and 7 were in CR. Recurrently mutated genes in these tumors included ATM (6/10; 60%), TP53 (4/10; 40%), KMT2C (3/10), MYCN (2/10), NOTCH1 (2/10), NOTCH3 (2/10), and MEF2B (2/10) (Fig. 1B). We did not detect any mutation or copy number alterations in BTK, PLCG2, TRAF2/3 and MYD88 that have been reported previously to be associated with ibrutinib resistance. Compared to tumors at baseline, ATM was mutated at a higher frequency in samples at progression (67% vs. 50%; p=NS). To investigate the mutation evolution on acalabrutinib treatment, mutation profiles, particularly the mutation variant allelic fractions (VAFs), were compared between the baseline and progression samples from pt-1 (Fig. 1C). Mutation of MYCN, MEF2B, ATM, and NOTCH1 were identified in both tumors at similar VAFs, whereas mutation of CARD11 (two mutations), NLRC5 and B2M were detected only at progression. In pt-1, both the NLRC5 and β2M mutations acquired at disease progression were truncating, suggesting loss-of-function alterations. Copy number analysis reveals frequent whole-genome doubling and intensive copy number alterations in all tumors, including recurrent losses of chromosome 9p, 17p, and chromosome 13, indicating chromosomal instability as a driver of disease progression. Conclusion: Patients who progress on acalabrutinib have a poor outcome, and newer therapies are required for their treatment. In this small cohort, we observed non-BTK mutations associated with acalabrutinib resistance and disease progression. Disclosures Nastoupil: Genentech: Honoraria, Research Funding; TG Therappeutics: Research Funding; Spectrum: Honoraria; Gilead: Honoraria; Merck: Honoraria, Research Funding; Janssen: Research Funding; Celgene: Honoraria, Research Funding; Karus: Research Funding; Novartis: Honoraria; Juno: Honoraria. Neelapu:Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Cellectis: Research Funding; Poseida: Research Funding; Merck: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Acerta: Research Funding; Karus: Research Funding; Bristol-Myers Squibb: Research Funding; Unum Therapeutics: Membership on an entity's Board of Directors or advisory committees; Kite/Gilead: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Membership on an entity's Board of Directors or advisory committees. Fowler:Janssen: Consultancy, Research Funding; Pharmacyclics: Consultancy, Research Funding. Wang:Acerta Pharma: Honoraria, Research Funding; MoreHealth: Consultancy; AstraZeneca: Consultancy, Research Funding; Kite Pharma: Research Funding; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Dava Oncology: Honoraria; Juno: Research Funding; Pharmacyclics: Honoraria, Research Funding; Janssen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Research Funding.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 461-461
Author(s):  
Parth Shah ◽  
Anil Aktas-Samur ◽  
Mariateresa Fulciniti ◽  
Raphael Szalat ◽  
Masood A. Shammas ◽  
...  

Abstract Background Focal amplifications and rearrangements drive tumor growth and evolution in cancer. Focally amplified regions often involve the juxtaposition of rearranged segments of DNA from distinct chromosomal loci into a single amplified region and nearly half of these regions can be explained by circular, extrachromosomal DNA (ecDNA) formation. Cancer-associated ecDNA shows a unique circular placing ecDNA at the interface of cancer genomics and epigenetics. As formation of ecDNA represents a manifestation of genomic instability, we have investigated presence and prognostic impact of ecDNA in multiple myeloma (MM). Methods Whole genome (WGS) and transcriptome (RNAseq) sequencing data from CD138 purified MM cells from 191 uniformly-treated newly diagnosed MM patients were used for this analysis. Copy number variants (CNV), single nucleotide variants (SNV) and structural variants (SV) were identified on all WGS samples using Facets, Mutect2 and Manta. Seed data from these CNV results was passed to the AmpliconArchitect tool to determine presence of focally amplified and rearranged segments of DNA. Seed CNV thresholds were set for a minimum CNV size of 100kb and a copy number of equal or greater to 5. Extrachromosomal calls were then annotated using the Amplicon Classifier to determine the presence of ecDNA. Multivariate survival analysis was performed after segregating samples into the conventional myeloma risk classifications including translocations, copy number alterations, ISS, age and mutations associated with risk. Differential expression analysis was performed on transcriptomic data using DEseq2. Results We identified 6.8% of the newly diagnosed patients with ecDNA, 12.5% with complex non-cyclic DNA amplifications and 10.1% with linear amplifications. ecDNA and complex events were targeting MM dependent genes, including MYC/PVT1, IRF4 as well as known driver genes such as CDYL and TRAF2. We further evaluated association between ecDNA, complex rearrangements, linear amplification and patients with none of these amplification types and found that patients with ecDNA had significantly poor PFS (median PFS 22 months vs. 41 months) and OS (median OS 41 months vs. 105 months). Patients having ecDNA in their MM cells did not show any significant enrichment for known translocations, double hit or TP53 mutations. In a multivariate model including ecDNA and all other known MM risk features, ecDNA was found to be an independent predictor of progression free survival.(HR 2.6, CI: 1.26 -5.6, p=0.0082) and overall survival (HR 7.94 CI:3.5-17.9 p &lt; 0.0001). Patients with ecDNA have higher mutational load probability(8798 vs 6982, effect size = 0.64 , probability is 91.1). However, this was not reflected in heterogeneity by using MATH score. We found that patients with ecDNA are likely to have BRAF mutations (OR= 25.07 [2.57 - 330 95% CI], p value = 0.002), however overall RAS/RAF pathway mutations were similar to other patients. Patients with ecDNA showed fragile DNA with more breaks (median segments 197 vs. 125.5, p value = 0.001). Although ecDNA is defined as copy number gain with fragments having 5 or more copies, overall genomic gain between ecDNA and other patients were similar. However, overall genomic loss in patients with ecDNA were higher than others (7% vs. 4.2%, p = 0.06). By differential gene expression analysis we noted 98 differentially expressed genes in MM cells with ecDNA. The downregulated geneset involved pathways responsible for cell death as well as the RAS pathway. Interestingly, CD38 was upregulated in the ecDNA dataset suggesting greater potential for CD38 targeting therapies in these patients. Conclusions ecDNA, as an unique marker of perturbed genomic integrity, is observed in a subset of patients and is an independent prognostic marker in newly diagnosed MM patients. As patients with ecDNA are not fully captured by other risk features its incorporation in an expanded definition of a high risk group of multiple myeloma should be investigated. Future studies will endeavor to explore the biological mechanism through which ecDNA are formed and influences outcomes in myeloma. Figure 1 Figure 1. Disclosures Richardson: Sanofi: Consultancy; GlaxoSmithKline: Consultancy; Karyopharm: Consultancy, Research Funding; AstraZeneca: Consultancy; AbbVie: Consultancy; Oncopeptides: Consultancy, Research Funding; Takeda: Consultancy, Research Funding; Janssen: Consultancy; Protocol Intelligence: Consultancy; Celgene/BMS: Consultancy, Research Funding; Secura Bio: Consultancy; Regeneron: Consultancy; Jazz Pharmaceuticals: Consultancy, Research Funding. Perrot: Abbvie: Honoraria; Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees; Celgene/BMS: Honoraria, Membership on an entity's Board of Directors or advisory committees; GSK: Honoraria, Membership on an entity's Board of Directors or advisory committees; Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees; Sanofi: Honoraria; Takeda: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Moreau: Abbvie: Honoraria; Amgen: Honoraria; Janssen: Honoraria; Sanofi: Honoraria; Celgene BMS: Honoraria; Oncopeptides: Honoraria. Thakurta: Oxford University: Other: Visiting Professor; BMS: Current Employment, Current equity holder in publicly-traded company. Anderson: Gilead: Membership on an entity's Board of Directors or advisory committees; Millenium-Takeda: Membership on an entity's Board of Directors or advisory committees; Pfizer: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Sanofi-Aventis: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees; Bristol Myers Squibb: Membership on an entity's Board of Directors or advisory committees; AstraZeneca: Membership on an entity's Board of Directors or advisory committees; Scientific Founder of Oncopep and C4 Therapeutics: Current equity holder in publicly-traded company, Current holder of individual stocks in a privately-held company; Mana Therapeutics: Membership on an entity's Board of Directors or advisory committees. Munshi: Legend: Consultancy; Karyopharm: Consultancy; Takeda: Consultancy; Janssen: Consultancy; Novartis: Consultancy; Bristol-Myers Squibb: Consultancy; Amgen: Consultancy; Abbvie: Consultancy; Adaptive Biotechnology: Consultancy; Oncopep: Consultancy, Current equity holder in publicly-traded company, Other: scientific founder, Patents & Royalties; Celgene: Consultancy; Pfizer: Consultancy.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 297-297
Author(s):  
Nikhil C. Munshi ◽  
Hervé Avet-Loiseau ◽  
Philip J. Stephens ◽  
Graham R Bignell ◽  
Yu-Tzu Tai ◽  
...  

Abstract Abstract 297 Genetic instability, a central feature of malignant cells, plays an important role in oncogenesis by perturbing critical cell signaling pathways, including activation of oncogene and/or deletion of tumor suppressor genes; moreover, ongoing genomic changes are associated with tumor progression, invasiveness, and drug resistance. We hypothesized that the inherent genomic instability in tumors would lead to a heterogeneous tumor cell population at diagnosis, thereby providing a substantial substrate for ongoing selection during progression of the disease. We have here investigated serial samples from patients with multiple myeloma (MM) using a variety of methodologies to study the genomic evolution. Purified MM cells, as well as matching normal samples from the same patients, were collected at 2 time points at least 4 months apart and subjected to genomic analyses. To compare the changes between matching normal and MM cells collected at two time points (range 5–18 months apart), we utilized SNP 6.0 array to identify copy number alterations (CAN); identified genome-wide rearrangements utilizing a low-coverage whole genome shotgun approach generated via next-generation sequencing; and, importantly, for the first time in 13 patients performed whole exome sequencing based on a solution phase capture and next generation sequencing. Variants identified in both the rearrangement and exome screens were validated on orthogonal platform. Our analysis demonstrates: 1) a significant intratumoural heterogeneity at the initial time of evaluation, suggesting that even at diagnosis multiple sub-clones may be co-existing; 2) discernable shifts in the clonal structure of disease at the time of progression (2nd sample) that indicates appearance of previously undetected sub-clones. We have observed frequent mutational changes (3 or more samples) involving CCND1, DTX1, KRAS genes. The changes are irrespective of intervention and disease status. We have also observed appearance of new copy number alterations and heterozygosity between 2 serial samples, ranging from 0.021 – 2.674 % (i.e. per 100 informative loci investigated), as well as insertion/deletion changes. These data therefore confirm evolution of genomic changes in MM patients over time and identify molecular alterations associated with progression of disease and development of drug resistance. This study begins to define the clonal architecture of MM and will provide insights into the impact of this structure and heterogeneity on pathogenesis and progression of disease. Disclosures: Munshi: Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees; Millennium: Consultancy, Membership on an entity's Board of Directors or advisory committees; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees; Onyx: Membership on an entity's Board of Directors or advisory committees. Richardson:Millennium: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Johnson & Johnson: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees; Bristol Myers Squibb: Membership on an entity's Board of Directors or advisory committees. Anderson:Celgene: Membership on an entity's Board of Directors or advisory committees; Millennium: Membership on an entity's Board of Directors or advisory committees; Onyx: Membership on an entity's Board of Directors or advisory committees; Merck: Membership on an entity's Board of Directors or advisory committees; Bristol Myers Squibb: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees; Acetylon: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3055-3055
Author(s):  
Mehmet Kemal Samur ◽  
Anil Aktas Samur ◽  
Tessa Han ◽  
Marco Roncador ◽  
Mariateresa Fulciniti ◽  
...  

Multiple Myeloma (MM) is a plasma cells malignancy with number of recent therapeutic options that has improved outcomes with median survival now stretching beyond 8 years. There has been an intense search to identify genomic and laboratory correlates of outcome for high risk patients. However, a subgroup of patients have a long survival but genomic segmentation of this important group which can be potentially cured has not been identified. We here described first such attempt at identifying a subset of patients with long survival. We have analyzed data from 205 newly-diagnosed uniformly-treated MM patients using both deep whole genome (WGS) (80x) and whole transcriptome sequencing (RNAseq). Median number of SNVs, small insertion and deletion per megabase were 2.18 [0.49 - 14.52], 0.077 [0.024 - 0.17] and 0.12 [0.03 - 0.26] respectively. MM subgroups defined by FISH or copy number alterations (CNAs) had significantly different mutational load (Kruskal-Wallis p-value = 0.003). In general, Hyperdiploid MM (HMM) patients had lower SNV load compared to other subgroups and t(14;16) had the highest mutational load per megabase (Dunn test FDR < 0.25). These subgroups also showed significant differences for mutational process utilization. Mutational processes associated spontaneous deamination of 5-methylcytosine to thymine was significantly high in HMM, APOBEC activity was very strong in t(14;16) MM and DNA repair was significantly different in t(6;14), del17p and t(11;14). Importantly, the mutations associated with clonal cell population and thus in early phases of MM cell progression were driven by spontaneous or enzymatic deamination (Signature 1), somatic hypermutation in lymphoid cells (Signature 9) and Signature 17 (ANOVA p value < 1e-16) and surprisingly APOBEC activity was constant among the clones (ANOVA p value > 0.05). However, mutations associated with homologous recombination (HR) and nucleotide excision repair (NER) activity were significantly enriched in the subclonal mutations (ANOVA p value < 1e-16) suggesting their role in later stages of MM progression. Based on this information, we next calculated the homologous recombination repair defects using copy number alterations from WGS data. We identified that HR score generated using WGS copy number information predicted outcome in newly diagnosed myeloma. Further analysis of this data identified that newly diagnosed MM patients with hyperdiploid MM (HMM) and no HR- repair deficiency have superior outcome with 6 year overall survival (OS) probability for this of 100% in IFM/DFCI 2009 cohort (Logrank test p value = 0.0012). We next validated this finding using MMRF CoMMpass dataset and we confirmed 6-yr OS probability of 95% (Logrank test p value = 0.0016) in this independent dataset (Figure 1). We further investigated RNAseq data between these genomically defined groups and identified that chromosome and telomere maintenance pathways (FDR < 0.01) and low bone disease associated genes described by Zhan et al. (FDR = 0.004) were up regulated in low-risk group. Finally, patients who were able to maintain HR, had lower mutation rate for TP53 (0% vs 9%, FDR < 0.05), CSMD1 (0% vs 6%, FDR < 0.05), FAT3/FAT4 mutations (1.7% vs 15%, FDR < 0.05), however surprisingly higher mutation rate for NRAS (42% vs 14%, p value < 0.001). In addition, DNA damage associated processes predicted by SNVs trinucleotides were significantly lower in the low-risk group (12% vs. 20%, p value < 1e-05) providing further support to this data. In conclusion, we report a detailed genomic profile using deep DNA and RNA sequencing and identify a genomically-defined sub group that is predicted to have a long survival. This study also identifies the role of HR in myeloma with potential for its translational application in both prognosis as well as therapy. Figure 1 Disclosures Richardson: Janssen: Membership on an entity's Board of Directors or advisory committees; Oncopeptides: Membership on an entity's Board of Directors or advisory committees, Research Funding; Sanofi: Membership on an entity's Board of Directors or advisory committees; Karyopharm: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Bristol-Myers Squibb: Research Funding; Takeda: Membership on an entity's Board of Directors or advisory committees, Research Funding; Amgen: Membership on an entity's Board of Directors or advisory committees. Moreau:Celgene: Consultancy, Honoraria; Janssen: Consultancy, Honoraria; Amgen: Consultancy, Honoraria; Takeda: Consultancy, Honoraria; AbbVie: Consultancy, Honoraria. Thakurta:Celgene: Employment, Equity Ownership. Anderson:Sanofi-Aventis: Other: Advisory Board; Bristol-Myers Squibb: Other: Scientific Founder; Oncopep: Other: Scientific Founder; Amgen: Consultancy, Speakers Bureau; Janssen: Consultancy, Speakers Bureau; Takeda: Consultancy, Speakers Bureau; Celgene: Consultancy, Speakers Bureau. Avet-Loiseau:celgene: Consultancy, Other: travel fees, lecture fees, Research Funding; takeda: Consultancy, Other: travel fees, lecture fees, Research Funding. Munshi:Takeda: Consultancy; Oncopep: Consultancy; Adaptive: Consultancy; Amgen: Consultancy; Celgene: Consultancy; Abbvie: Consultancy; Janssen: Consultancy.


2022 ◽  
Author(s):  
Etienne Sollier ◽  
Jack Kuipers ◽  
Niko Beerenwinkel ◽  
Koichi Takahashi ◽  
Katharina Jahn

Reconstructing the history of somatic DNA alterations that occurred in a tumour can help understand its evolution and predict its resistance to treatment. Single-cell DNA sequencing (scDNAseq) can be used to investigate clonal heterogeneity and to inform phylogeny reconstruction. However, existing phylogenetic methods for scDNAseq data are designed either for point mutations or for large copy number variations, but not for both types of events simultaneously. Here, we develop COMPASS, a computational method for inferring the joint phylogeny of mutations and copy number alterations from targeted scDNAseq data. We evaluate COMPASS on simulated data and show that it outperforms existing methods. We apply COMPASS to a large cohort of 123 patients with acute myeloid leukemia (AML) and detect copy number alterations, including subclonal ones, which are in agreement with current knowledge of AML development. We further used bulk SNP array data to orthogonally validate or findings.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 411-411 ◽  
Author(s):  
Linda Holmfeldt ◽  
Jinghui Zhang ◽  
Jing Ma ◽  
Meenakshi Devidas ◽  
Andrew J. Carroll ◽  
...  

Abstract Abstract 411 Hypodiploid acute lymphoblastic leukemia (ALL) comprises up to 7% of pediatric ALL cases, and is characterized by multiple chromosomal losses and very poor outcome. Prognosis is associated with the degree of aneuploidy, with outcome much worse for cases with less than 44 chromosomes. To date, there is no clear biologic rationale for the poor outcome of hypodiploid ALL. To gain insights into the genetic basis of hypodiploid ALL, we performed a genome-wide analysis of genetic alterations in 128 hypodiploid childhood ALL cases treated by the Children's Oncology Group (N=97) and St Jude (N=31). This cohort comprised 50 near haploid cases (24–34 chromosomes), 24 low hypodiploid ALL cases (35–44 chromosomes), 33 masked hypodiploid cases (with a near haploid or low hypodiploid genome that has doubled), and 21 high hypodiploid cases (45 chromosomes) with a dicentric chromosome, most commonly involving chromosomes 9 and either 12 or 20. DNA copy number alterations and loss of heterozygosity (LOH) were examined using Affymetrix SNP 6.0 arrays on both leukemia and remission DNA, and candidate gene resequencing was performed for genes and pathways involved by recurring copy number alterations and mutation in ALL (including PAX5, IKZF1, IKZF2, IKZF3, JAK1, JAK2, KRAS, NRAS, PTPN11, CBL, NF1 and FLT3). Recurring aneuploidy was observed for all chromosomes with the exception of chromosome 21, with the most common targets of aneuploidy being chromosomes 2, 3, 4, 7, 9, 12, 13, 15, 16, 17 and 20. We identified multiple recurring focal deletions, the nature and frequency of which were significantly associated with degree of aneuploidy. The most frequent alteration was deletion of CDKN2A/CDKN2B at 9p21 (encoding INK4/ARF) in 32% of cases, with deletions most commonly observed in high hypodiploid ALL cases with dicentric chromosomes (76% of cases) compared to 23% in near haploid, low and masked hypodiploid ALL cases. The B-lymphoid transcription factor gene PAX5 (9p13) was mutated (by deletion, amplification, rearrangement or sequence mutation) more frequently in dicentric cases (62%) than in cases with loss of 2 or more chromosomes (7%). Additional recurring deletions were observed in the histone loci at 6p22, and PAG1 at 8q21.13 (10% and 9%, respectively, of hypodiploid ALL cases with loss of 2 or more chromosomes). A striking novel finding was a high frequency of focal deletions and sequence mutations targeting the IKAROS family members IKZF2 (encoding the lymphoid transcription factor HELIOS, 2q34) and IKZF3 (AIOLOS, 17q21). IKZF2 and IKZF3 deletions and sequence mutations were only present in hypodiploid ALL cases with 38 chromosomes or less and masked hypodiploid ALL cases (IKZF2 21%; IKZF3 10%). Deletions of these genes are uncommon in other subtypes of ALL (e.g. 2% IKZF3 deletions in non-hypodiploid B-ALL). Conversely, focal deletion of IKZF1 (encoding IKAROS, 7p13-p11.1), which is found in up to one-third of non-hypodiploid ALL cases, was rare in hypodiploid ALL, and mostly present in cases with a near diploid genome. We also observed a high frequency of deletions and sequence mutations targeting the Ras signaling pathway (KRAS (2%), NRAS (10%), NF1 (28%), PTPN11 (2%) and FLT3 (6%)) in near haploid, low and masked hypodiploid ALL (total 45% of these cases). The NF1 deletions were most commonly focal, and involved an internal subset of exons (exons 15–37, 18% of cases with 38 chromosomes or less and masked hypodiploid samples). Notably, the sequence mutations and deletions of NF1, IKZF2 and IKZF3 were almost always mutually exclusive, and frequently occurred in conjunction with loss of the entire other copy of the corresponding chromosome, resulting in biallelic deletion and/or inactivation of the involved gene. This study provides the first detailed genetic analysis of this high risk subtype of ALL, and suggests that genetic alterations targeting Ras signaling and lymphoid development are central to the pathogenesis and poor prognosis of low hypodiploid ALL. Moreover, these results suggest that therapeutic targeting of Ras signaling may be of clinical benefit in this very high risk subtype of ALL. Disclosures: Hunger: bristol myers squibb: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; eisai: Honoraria, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4212-4212
Author(s):  
Mehmet K Samur ◽  
Stephane Minvielle ◽  
Florence Magrangeas ◽  
Giovanni Parmigiani ◽  
Kenneth C Anderson ◽  
...  

Abstract Progress in the treatment of multiple myeloma (MM) has increased extent and frequency of response, as well as prolonged progression-free (PFS) and overall survival (OS). Today complete remission (CR) rates up to 70% are achieved with new drug combinations. This has lead to development of sensitive next generation sequencing (NGS) -based methods to predict deeper responses that may more accurately predict survival outcomes in MM. Our large recent study has confirmed the clinical impact of achieving MRD- status in MM. Here we are evaluating the genomic alterations that may predict attainment of MRD negative status in MM. MRD status was evaluted in 279 patients from IFM/DFCI 2009 trial. We obtained gene expression by RNA-seq, and copy number profile by cytoScan HD array to evaluate genomic differences between MRD negative and MRD positive groups. We generated copy number data for 175 / 279 patients (72 MRD- and 103 MRD+) with Affymetrix Cytoscan HD array and compared genome wide copy number alterations. We observed statistically significant copy number alterations in chromosome 1p, 2, 4q, 11q, 13, 14 and 20 between MRD- and MRD+ patients. However, the extent of alterations in these regions is limited. The largest difference was on chromosome 11q arm where MRD- patients had 2.2 copies on average and MRD+ had 2.4 (p value < 0.001). Similarly, we generated gene expression profiles with RNAseq for 69 MRD- patients and 92 MRD+ patients to study gene expression alterations that may predict attainment of MRD negative status and to examine possible biological pathways. Although first two component of principle component analysis (PCA) showed that two groups have similar expression profile, we were able to identify 586 differentially expressed genes; 333 of those were up and 253 were down regulated in MRD+ compared to MRD- groups. We found that seven oncogenes (CCND1, CD79B, IDH1, PATZ1, PAX5, POU2AF1, RUNX1) were significantly high in MRD+ and two (CCND2 and MYCN) were high in MRD-. Additional genes that were high in MRD+ samples were enriched in genes regulated by NF-kB in response to TNF, P53 pathway, KRAS signaling and genes down-regulated in response to ultraviolet (UV) radiation. Genes that were high in MRD- compared to MRD+ were also enriched in genes up-regulated by STAT5 in response to IL2 stimulation, p53 pathways and networks, and genes up-regulated in response to ultraviolet (UV) radiation pathways. Finally, we have created a signature to predict MRD+ and MRD- in MM samples from differentially expressed genes. We used 40 genes that has at least 2 fold change difference between MRD+ and MRD- groups as a predictor and we randomly separated 161 RNAseq samples into train (n=99) and test group (n=62). We developed our classifiers with diagonal discriminant analysis and we achieved 0.79 classifier performance on test dataset. Then we tested our signature against 1000 random signature and it was significantly different than random signatures (Figure). In conclusion, we here report a first genomic landscape predictive of minimal residual disease (MRD) in Multiple Myeloma (MM). This analysis will help understand genomic and molecular correlates of achieving minimal residula disease and confirms feasibility of using RNAseq data from diagnosis sample to predict MRD status. The ongoing integration of other genomic correlates such as copy number status as well as alternate splicing may allow further improvement in the performance of prediction. Figure 1. Figure 1. Disclosures Anderson: Gilead: Consultancy; acetylon pharmaceuticals: Equity Ownership; Oncocorp: Equity Ownership; Celgene Corporation: Consultancy; BMS: Consultancy; Millennium: Consultancy. Attal:jansen: Honoraria; celgene: Membership on an entity's Board of Directors or advisory committees. Munshi:onyx: Membership on an entity's Board of Directors or advisory committees; celgene: Membership on an entity's Board of Directors or advisory committees; millenium: Membership on an entity's Board of Directors or advisory committees; novartis: Membership on an entity's Board of Directors or advisory committees.


Sign in / Sign up

Export Citation Format

Share Document