scholarly journals DNMT3A Regulates Hematopoietic Stem Cell Function Via DNA Methylation-Independent Functions

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 24-24
Author(s):  
Won Kyun Koh ◽  
Hamza Celik ◽  
Jacob Tao ◽  
Jake Fairchild ◽  
Ostap Kukhar ◽  
...  

Abstract The balance between self-renewal and differentiation of hematopoietic stem cells (HSCs) is strictly regulated to sustain blood production throughout adult life. De novo DNA methyltransferase 3-alpha (DNMT3A) is one of the major epigenetic regulators that is essential for efficient HSC differentiation. DNMT3A mutations are prevalent in myeloid diseases that include acute myeloid leukemia (AML; ~22%) and myelodysplastic syndrome (MDS; ~10%) where they act as initiating events However, the precise molecular mechanisms of how DNMT3A regulates normal hematopoiesis and its mutations prime HSCs for leukemic formation are unclear. Although DNMT3A is described as a DNA methyltransferase enzyme, the lack of consistent correlation between changes in DNA methylation and differential gene expression in Dnmt3a-null HSCs in mouse models, and AML patients with DNMT3A mutations undermine the conventional understanding of DNMT3A's canonical role in hematopoietic cells. Hence, we hypothesized that DNMT3A may have novel functions outside of DNA methylation that regulate HSC fate decisions. To answer this question, we first ectopically expressed GFP-labeled Dnmt3a constructs (wild-type Dnmt3a, Dnmt3aE752A; complete DNA methylation dead, and Dnmt3aR832A; reduced DNA methylation target recognition) and empty vector (negative control) in Dnmt3a-null (Vav-Cre: Dnmt3afl/fl = Dnmt3a-/- in hematopoiesis) bone marrow (BM) cells. The result showed that similar to restoring wild-type Dnmt3a, ectopic expression of Dnmt3aE752A as well as Dnmt3aR832A showed a rescue effect of decreased engraftment of transduced cells in the peripheral blood as well as reduced HSC numbers in the BM. Analysis of DNA methylation by whole-genome bisulfite sequencing (WGBS) in transduced cells showed this phenotypic and functional rescue of the Dnmt3a-/- phenotype occurred in the absence of restored DNA methylation patterns. To study the importance of Dnmt3a-mediated DNA methyltransferase activity in a more physiological system, we generated knock-in mice that have one copy of either wild-type Dnmt3a, Dnmt3aE752A, or Dnmt3aR832A (CAGG-Cre-ER T2 = ER T2-Cre: Dnmt3afl/+, Dnmt3afl/E752A, and Dnmt3afl/R832A) to be compared to the Dnmt3a-null group (ER T2-Cre: Dnmt3afl/-). These mice contain one allele with loxP-flanked Dnmt3a that is deleted by tamoxifen-inducible Cre-mediated recombination and one allele of either wild-type Dnmt3a, Dnmt3aE752A, Dnmt3aR832A, or germline knockout Dnmt3anull. 5-weeks post-tamoxifen (~93% floxed allele recombination), competitive transplantation of 250 phenotypically defined test HSCs against with 2.5x10 5 congenic competitor BM cells was performed. Dnmt3a fl/R832A recipients had higher engraftment (35.6 % +/- 6.1) than Dnmt3afl/+ (28.5% +/- 7.2) and Dnmt3afl/- (10.7% +/- 2.79), while Dnmt3afl/E752A had slightly higherengraftment (12.5% +/- 3) than Dnmt3afl/-. Analysis of the BM 18 weeks post-transplant showed that Dnmt3afl/E752A and Dnmt3afl/R832A HSCs phenocopied the HSC self-renewal potential phenotype of heterozygous Dnmt3a fl/+HSCs (Fig. 1). The absolute count of donor-derived HSCs per mouse after the transplant were: ER T2-Cre control (675.7 +/- 299.3), Dnmt3afl/+ (1870 +/- 961.4), Dnmt3afl/- (3546 +/- 1019), Dnmt3afl/E752A (1130 +/- 362.7), and Dnmt3afl/R832A (1184 +/- 344.5) (mean +/- S.E.M.). While the described clonal expansion of Dnmt3a-null HSCs was observed, HSCs with one copy of full-length Dnmt3a but devoid of its methyltransferase capacity mimicked the heterozygous state rather than the homozygous loss-of-function. This is the first evidence to suggest that DNMT3A potentially regulates HSCs by non-canonical (DNA methylation independent) mechanisms. DNA methylation analysis by WGBS is ongoing to determine if Dnmt3afl/E752A and Dnmt3afl/R832A HSCs show a methylome comparable to Dnmt3a-null HSCs whilst having the functional potential of Dnmt3a-heterozygous HSCs, which will be complemented with other molecular analyses including gene expression. Our study opens new avenues for investigations into the molecular mechanisms of DNMT3A function in HSC biology, which could ultimately benefit clinical practice by identifying new therapeutic approaches for the patients with DNMT3A mutations. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 309-309
Author(s):  
Hein Schepers ◽  
Patrick Korthuis ◽  
Marjan Geugien ◽  
Jennifer Jaques ◽  
Tihomira I. Todorova ◽  
...  

Abstract CITED2 has a conserved role in the maintenance of normal hematopoiesis. We have recently shown that ~70% of acute myeloid leukemia (AML) patients display enhanced CITED2 expression levels. Interfering with CITED2 expression is detrimental for leukemia maintenance in vitro and in vivo, demonstrating that CITED2 is critically important for the survival of leukemic stem cells (LSCs). Ectopic expression of CITED2 in normal CD34+ stem and progenitor cells (HSPCs) led to significantly better human engraftment in transplanted NSG mice, consistent with the maintenance of very primitive lin- CD34+ CD38- CD90+ CD45RA- HSCs within the bone marrow 28 weeks after transplantation. Although the CITED2-engrafted mice displayed enlarged spleens, blood development appeared normal, as measured through myeloid, B and T cell staining. This indicates that CITED2 as a single hit is not sufficient to transform human CD34+ cells. CITED2 expression frequently coincides with low expression of the myeloid transcription factor PU.1, suggesting that combined effects, rather than single events are important during AML development. To investigate this, we combined lentiviral downregulation of PU.1 with overexpression of CITED2 (PU.1Low-CITED2High) and studied hematopoietic development. CITED2 increased the percentage of immature CD34+ CD38- cells 5-fold, which was not further increased by the additional downregulation of PU.1. However, functional analysis through limiting dilution LTC-iC assays indicated that combining PU.1 down-, with CITED2 upregulation led to a synergistic 8.5-fold increase in LTC-iC frequency, whereas only changing PU.1 or CITED2 induced a respective 1.4 to 3-fold change in HSC frequency. To more stringently assess self-renewal, we cultured transduced cells for 4 weeks on MS5 cells under myeloid differentiating conditions (G-CSF, IL3 and TPO) and subsequently performed CFC assays. Whereas after 4 weeks all groups displayed similar colony numbers, secondary and tertiary replatings demonstrated that self-renewal could only be maintained for more than 10 weeks when CITED2 upregulation was combined with PU.1 downregulation. This replating capacity of PU.1Low-CITED2High cells was limited to CD34+ CD38- HSCs, as replating of CD34+ CD38+ progenitor-derived colonies did not yield new CFCs. In order to investigate the underlying mechanisms, we performed transcriptome analysis on human HSCPs after knockdown of PU.1, overexpression of CITED2 or the combination of both. PU.1Low-CITED2High cells displayed a gene expression pattern different from the PU.1Low or CITED2High only cells, suggesting that the two events have synergistic effects. Some genes, like HLX and SF3B1 have been shown to cause or are mutated in AML, demonstrating that the synergistic changes are related to AML. When comparing the differentially regulated genes in the PU.1Low -CITED2High cells to the gene expression in the Hemaexplorer database, a similar pattern was observed, when compared between AML and normal cells. In order to investigate the effects of the PU.1low CITED2high combination on AML development, we resorted to a PU.1-dependent mouse model of AML development. CITED2 expression in BM cells from PU.1KD/KD mice (in which deletion of an Upstream Regulatory Element leads to an 80% downregulation of PU.1), led to a steady increase of GFP+ cells over time as compared to control cells and demonstrated a dramatic expansion of Gr-1+ Mac-1+ cells, a hallmark of AML in these mice. This suggests that CITED2 contributes to a faster progression towards AML upon lowering of PU.1. To identify if our model corresponds to AMLs with a specific subset of mutations, we clustered publically available AML data (TCGA), based on the gene expression changes in the PU.1Low -CITED2High cells. The majority of AMLs clustered together in 2 groups, in which FLT3, p53 and DNMT3A mutations were most prevalent. FLT3 mutations, through its activation of STAT5, are consistent with high CITED2 expression, whereas p53 mutations are consistent with our data indicating that CITED2 loss regulates HSCs in a p53-dependent manner. The presence of DNMT3A mutations suggests that DNA methylation changes collaborate with high CITED2 and low PU.1 during leukemogenesis. This is currently under investigation. In summary, our data imply that CITED2, low PU.1 and potentially changes in DNA methylation all contribute to maintenance of self-renewal and leukemogenesis. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2367-2367
Author(s):  
Yan Xiu ◽  
Chen Zhao

Abstract We previously demonstrated that the NF-B non-canonical signaling way positively and intrinsically regulates hematopoietic stem/progenitor cell (HSPC) self-renewal and maintains stromal/osteoblastic niches (Stem Cells 2012 30:709-18). These results lead us to think that persistent activation of NF-B non-canonical signaling would have favorable effects on the HSPC pool size and self-renewal capacity. NF-B-inducing kinase (NIK) plays a critical role in non-canonical NF-B signaling by directly phosphorylating IKK. It is constitutively degraded by TRAF3 in unstimulated cells to prevent unwanted NF-B activation. To investigate the enhanced NF-kB non-canonical signaling specifically in hematopoietic cells, we crossed Vav-Cre mice with a mouse strain in which a mutated form of NIK lacking the TRAF3-binding domain is expressed under the control of the ROSA26 promoter after Cre-mediated deletion of the LoxP-flanked STOP cassette (NIKΔT3Cre mice). In contrast to what we expected in these preliminary studies, the NIKΔT3Cre mice rapidly developed anemia, pancytopenia, with a reduced HSPC pool and marrow cellularity and postnatal lethality, mimicking many of the findings in humans with bone marrow failure syndrome, and different from recently published mice with deficiency in A20, which also activates NF-B signaling. Furthermore, the NIK activated HSPCs have profoundly impaired engraftment and self-renewal activity after transplantation into wild-type recipients. Further analysis showed that the mutant cells are proliferate faster and predispose to apoptosis than wild type cells. These observations suggest that finely controlled NF-B activity is crucial for HSC maintenance. Currently, we are focusing on the analysis of the underlying molecular mechanisms. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 733-733 ◽  
Author(s):  
Ashish R. Kumar ◽  
Wendy A. Hudson ◽  
Weili Chen ◽  
Rodney A. Staggs ◽  
Anne-Francoise Lamblin ◽  
...  

Abstract In order to understand the pathophysiology of leukemia, we need to study the effects of leukemic oncogenes on the rare hematopoietic stem and progenitor cells. We investigated the self-renewal capabilities of the various hematopoietic cell types derived from Mll-AF9 knock-in mice. We used the murine knock-in model since it offers the advantage of a single copy of the Mll-fusion gene under the control of the endogenous promoter present in every hematopoietic stem/progenitor cell. In methylcellulose cultures, we compared myeloid colony formation of Mll-AF9 cells to wild type progenitor populations over three generations of plating. In the first generation of plating, the Mll-AF9 common myeloid progenitors (CMPs) and granulocyte-macrophage progenitors (GMPs) formed more colonies than the hematopoietic stem cells (HSCs) and common lymphoid progenitors (CLPs). However, at the third generation of plating, colony numbers formed by Mll-AF9 HSCs and CLPs were significantly greater than those formed by CMPs and GMPs. By the third generation only occasional colonies were found in the wild type groups. These results demonstrate that while Mll-AF9 led to an increase in self-renewal of all 4 cell types studied, these effects were more pronounced in HSCs and CLPs. To identify the downstream genes that mediate the growth deregulatory effects of Mll-AF9, we compared gene expression profiles of Mll-AF9 derived cells to their wild type counterparts. To assess gene expression levels, we extracted RNA from wild type and Mll-AF9 HSCs, CLPs, CMPs and GMPs. We then amplified and labeled the RNA for analysis by Affymetrix murine 430 2.0 genome arrays. In an unsupervised analysis, the various Mll-AF9 cells clustered with their corresponding wild type counterparts, indicating that the expression of most genes was not significantly altered by Mll-AF9. To identify the genes that are differentially expressed in the Mll-AF9 derived cells, we performed a two-way ANOVA (with the genotype and cell type as the two variables) allowing for a false discovery rate of 10%. In this analysis, we found that 76 genes were up-regulated in all Mll-AF9 progenitor cells compared to their wild-type counterparts. This list included known targets of Mll-fusion proteins Hoxa5, Hoxa7, Hoxa9 and Hoxa10. Also included were Evi1 and Mef2c, two genes that have been implicated in promoting enhanced self-renewal of murine hematopoietic cells. Importantly, in wild type mice, these 6 genes were expressed at higher levels in HSCs and CLPs compared to CMPs and GMPs (average 3–25 fold). While we observed an average 2–10 fold increase in expression of these genes in all Mll-AF9 cell types compared to their respective wild type controls, the expression level was 3–8 fold higher in Mll-AF9 HSCs and CLPs compared to CMPs and GMPs. Thus, the expression of genes known to be intrinsically related to self-renewal is further enhanced as a result of the Mll-AF9 fusion gene. In conclusion, while activation of the Mll-AF9 genetic program and the resulting enhanced self-renewal occurs in all 4 cell types studied, these effects are greatest in HSCs and CLPs. Thus, HSCs and CLPs are likely to be more efficient than CMPs and GMPs in producing cellular expansion and targets for cooperating mutations resulting in leukemia.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 859-859 ◽  
Author(s):  
Chen Zhao ◽  
Yan Xiu ◽  
John M Ashton ◽  
Lianping Xing ◽  
Yoshikazu Morita ◽  
...  

Abstract Abstract 859 RelB and NF-kB2 are the main effectors of NF-kB non-canonical signaling and play critical roles in many physiological processes. However, their role in hematopoietic stem/progenitor cell (HSPC) maintenance has not been characterized. To investigate this, we generated RelB/NF-kB2 double-knockout (dKO) mice and found that dKO HSPCs have profoundly impaired engraftment and self-renewal activity after transplantation into wild-type recipients. Transplantation of wild-type bone marrow cells into dKO mice to assess the role of the dKO microenvironment showed that wild-type HSPCs cycled more rapidly, were more abundant, and had developmental aberrancies: increased myeloid and decreased lymphoid lineages, similar to dKO HSPCs. Notably, when these wild-type cells were returned to normal hosts, these phenotypic changes were reversed, indicating a potent but transient phenotype conferred by the dKO microenvironment. However, dKO bone marrow stromal cell numbers were reduced, and bone-lining niche cells supported less HSPC expansion than controls. Further, increased dKO HSPC proliferation was associated with impaired expression of niche adhesion molecules by bone-lining cells and increased inflammatory cytokine expression by bone marrow cells. Thus, RelB/NF-kB2 signaling positively and intrinsically regulates HSPC self-renewal and maintains stromal/osteoblastic niches and negatively and extrinsically regulates HSPC expansion and lineage commitment through the marrow microenvironment. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3442-3442
Author(s):  
Michael Getman ◽  
Samantha J England ◽  
James Palis ◽  
Laurie A Steiner

Abstract Abstract 3442 The maturation of a committed erythroid progenitor to a functional red blood cell is a complex process involving significant changes in gene expression during a time of rapid cell division and nuclear condensation. LSD1 (Lysine-Specific Histone Demethylase 1) is a histone H3 lysine 4 (H3K4) and lysine 9 (H3K9) demethylase that plays pivotal role in this process. LSD1 participates in both enhancer and repressor complexes, and facilitates repression of γ-globin by participating in the Direct Repeat Erythroid Complex (Cui, MCB, 2011). LSD1 inhibitors Tranylcypromine (TCP) and Pargyline (PG) are being investigated as potential therapies for the β-globinopathies, however little is known about the broader functional or genomic consequences of LSD1 inhibition on terminal erythroid maturation. Both TCP and PG impair erythroid maturation in Extensively Self Renewing Erythroblasts (ESREs), a primary cell model of terminal erythroid maturation. ESREs are primary cells derived from fetal liver that proliferate extensively in culture, but retain the ability to appropriately mature and enucleate (England, Blood, 2011), making them ideal for functional and genomic studies of terminal erythroid maturation. In untreated or vehicle (DMSO) treated cultures >90% of cells are benzidine positive by day3 of maturation. In contrast, cultures treated with 400um PG, 1um TCP, or 2um TCP were 72, 42, and 33% benzidine positive by maturation day3, respectively. Cells in the TCP-and PG- treated cultures also had morphologic evidence of impaired maturation, with larger nuclei and more basophilic cytoplasm. In addition to its role as a histone demethylase, LSD1 stabilizes DNMT1 (DNA methyltransferase 1; Wang, Nat Genet 2009). We hypothesized that loss of DNA methylation contributes to the maturation impairment seen with LSD1 inhibitors, and that inhibition of DNMTs with decitabine would also impair terminal erythroid maturation. Consistent with this hypothesis, ESREs treated with decitabine demonstrated a dose-dependent impairment of maturation similar to that seen with PG and TCP. To elucidate the molecular mechanisms underlying the maturation impairment in TCP- and PG- treated cultures, levels of H3K4me2 and methylated DNA (5-methyl cytosine, 5-mC) were assessed both globally and at specific loci. An ELISA (Enzyme-linked Immunosorbent Assay) was used to assess global levels of H3K4me2 and 5-mC in vehicle-, PG-, and TCP-treated cultures after 24 hours of maturation. Global levels of H3K4me2 were significantly higher in PG- and TCP- treated samples than control. In maturing cells, there was no significant difference in the level of 5-mC in vehicle- and inhibitor- treated cultures. It is well established, however, that global DNA methylation decreases with erythroid maturation (Seashore, Science, 2011), and a significant decrease in 5-mC occurs in ESREs during the first 24hrs of maturation. As TCP- and vehicle- treated cultures mature differently, the effect of TCP on 5-mC levels was also assessed in self-renewing ESREs at the proerythroblast stage. Unlike maturing cells, TCP-treated proerythroblasts had a significant decrease in 5-mC levels compared to control. Chromatin immunoprecipitation (ChIP) was used to examine the local effects of LSD1 inhibition on H3K4me2 enrichment at erythroid-specific promoters. TCP-treated cultures had non-uniform changes in H3K4me2 enrichment, with levels increased at some promoters (e.g. protein 4.1,εy-globin), but unchanged at others (e.g. β-globin). To further study the relationship between LSD1 inhibition and H3K4me2 levels, ChIP-seq was used to identify LSD1 sites that co-localized with putative enhancers, defined as peaks of H3K4me2 binding > than 1kb from a transcription start site. ChIP-qPCR was used to compare the level of H3K4me2 at 5 validated enhancer-associated LSD1 sites in vehicle- and TCP-treated cells. The effect of TCP was variable, with only 2/5 enhancer-associated LSD1 sites having increased H3K4me2. Lastly, the local effects of inhibitors on 5-mC were examined using a methyl binding domain pulldown coupled with qPCR. In TCP-treated cells, 5-mC levels declined at several loci, most notably at the εy-globin promoter. Taken together, these results suggest that the impaired erythroid maturation associated with LSD1 inhibition results from the perturbation of multiple mechanisms of epigenetic regulation. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1190-1190
Author(s):  
Wenhuo Hu ◽  
James Dooley ◽  
Stephen S. Chung ◽  
Safak Yalcin ◽  
Yu Sup Shin ◽  
...  

Abstract microRNAs (miRNAs) are important regulators of both embryonic and adult tissue stem cell self-renewal. We previously showed that ectopic expression of miR-29a, a miRNA highly expressed in HSCs as well as in human acute myeloid leukemia (AML) stem cells, in immature mouse hematopoietic cells is sufficient to induce a myeloproliferative disorder that progresses to AML. During the early phase of this disease, miR-29a induces aberrant self-renewal of committed myeloid progenitors, strongly suggesting a role for miR-29a in regulating HSC self-renewal. In order to determine the role of miR-29a in HSC function, we have evaluated our recently described miR-29a/b1 null mouse. Homozygous deletion of miR-29a/b1 resulted in reduced bone marrow cellularity and reduced colony forming capacity of hematopoietic stem and progenitor cells (HSPCs). The phenotype was mediated specifically by miR-29a since miR-29b expression was not significantly altered in HSCs and reconstitution of miR-29a/b1 null HSPCs with miR-29a, but not miR-29b, rescued in vitro colony formation defects. Self-renewal defects were observed in miR-29a deficient HSCs in both competitive and non-competitive transplantation assays, and these deficits were associated with increased HSC cell cycling and apoptosis. Gene expression studies of miR-29a deficient HSCs demonstrated widespread gene dysregulation including a number of up-regulated miR-29a target genes including DNA methylation enzymes (Dnmt3a, -3b) and cell cycle regulators (e.g. Cdk6, Tcl1, Hbp1, Pten). Knockdown of one of these targets, Dnmt3a, in miR-29a deficient HSCs resulted in partial restoration of colony formation, providing functional validation that Dnmt3a mediates part of miR-29a null HSPCs functional defects. miR-29a loss also abrogated leukemogenesis in the MLL-AF9 retroviral AML model. Together, our results demonstrate that miR-29a positively regulates HSC self-renewal and is required for myeloid leukemogenesis. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2406-2406
Author(s):  
Mira Jeong ◽  
Deqiang Sun ◽  
Min Luo ◽  
Yun Huang ◽  
Myunggon Ko ◽  
...  

Abstract Identification of recurrent leukemia-associated mutations in genes encoding regulators of DNA methylation such as DNMT3A and TET2 have underscored the critical importance of DNA methylation in maintenance of normal physiology. To gain insight into how DNA methylation exerts the central role, we sought to determine the genome-wide pattern of DNA methylation in the normal precursors of leukemia cells: the hematopoietic stem cell (HSC), and investigate the factors that affect alterations in DNA methylation and gene expression. We performed whole genome bisulfite sequencing (WGBS) on purified murine HSCs achieving a total of 1,121M reads, resulting in a combined average of 40X coverage. Using Hidden Markov Model we identified 32,325 under-methylated regions (UMRs) with average proportion of methylation ≤ 10% and by inspecting the UMR size distribution, we discovered exceptionally large “methylation Canyons” which span highly conserved domains frequently containing transcription factors and are quite distinct from CpG islands and shores. Methylation Canyons are a distinct genomic feature that is stable, albeit with subtle differences, across cell-types and species. Canyon-associated genes showed a striking pattern of enrichment for genes involved in transcriptional regulation (318 genes, P=6.2 x 10-123), as well as genes containing a homeobox domain (111 genes, P=3.9 x 10-85). We compared Canyons with TF binding sites as identified from more than 150 ChIP-seq data sets across a variety of blood lineages (>10)19 and found that TF binding peaks for 10 HSC pluripotency TFs are significantly enriched in entirety of Canyons compared with their surrounding regions. Low DNA methylation is usually associated with active gene expression. However, half of Canyon genes associated with H3K27me3 showed low or no expression regardless of their H3K4me3 association while H3K4me3-only Canyon genes were highly expressed. Because DNMT3A is mutated in a high frequency of human leukemias24, we examined the impact of loss of Dnmt3a on Canyon size. Upon knockout of Dnmt3a, the edges of the Canyons are hotspots of differential methylation while regions inside of Canyon are relatively resistant. The methylation loss in Dnmt3a KO HSCs led Canyon edge erosion, Canyon size expansion and addition of 861 new Canyons for a total of 1787 Canyons. Canyons marked with H3K4me3 only were most likely to expand after Dnmt3a KO and the canyons marked only with H3K27me3 or with both marks were more likely to contract. This suggests Dnmt3a specifically is acting to restrain Canyon size where active histone marks (and active transcription) are already present. WGBS cannot distinguish between 5mC and 5hmC, so we determined the genome-wide distribution of 5hmC in WT and Dnmt3a KO HSCs using the cytosine-5-methylenesulphonate (CMS)-Seq method in which sodium bisulfate treatment convert 5hmC to CMS; CMS-containing DNA fragments are then immunoprecipitated using a CMS specific antiserum. Strikingly, 5hmC peaks were enriched specifically at the borders of Canyons. In particular, expanding Canyons, typically associated with highest H3K4me3 marking, were highly enriched at the edges for the 5hmC signal suggesting a model in which Tet proteins and Dnmt3a act concomitantly on Canyon borders opposing each other in alternately effacing and restoring methylation at the edges, particularly at sites of active chromatin marks. Using Oncomine data, we tested whether Canyon-associated genes were likely to be associated with hematologic malignancy development and found Canyon genes were highly enriched in seven signatures of genes over-expressed in Leukemia patients compared to normal bone marrow; in contrast, four sets of control genes were not similarly enriched. Further using TCGA data, we found that expressed canyon genes are significantly enriched for differentially expressed genes between patients with and without DNMT3A mutation (p value<0.05) Overall, 76 expressed canyon genes, including multiple HOX genes, are significantly changed in patients with DNMT3A mutation (p=0.0031). Methylation Canyons, the novel epigenetic landscape we describe may provide a mechanism for the regulation of hematopoiesis and may contribute to leukemia development. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4792-4792
Author(s):  
Wenhuo Hu ◽  
James Dooley ◽  
Luisa Cimmino ◽  
Adrian Liston ◽  
Christopher Y. Park

Abstract MicroRNAs are small non-coding RNAs that interfere with gene expression by degrading messenger RNAs (mRNAs) or blocking protein translation. Expression profiling studies has identified miRNAs that regulate normal and malignant hematopoietic stem cell function. Our previous studies showed that ectopic expression of miR-29a in mouse bone marrow cells induced a myeloproliferative disorder that progressed to acute myeloid leukemia (AML). Over-expression of miR-29b in AML cell lines has been reported to induce apoptosis by negatively regulating Dnmt3a. We recently found that miR-29a positively regulates hematopoietic stem cell (HSC) self-renewal and proliferation using a knockout mouse model of miR-29ab. miR-29a null mice contained significantly lower HSC numbers and miR-29a null HSCs exhibited markedly decreased reconstitution ability in both competitive and non-competitive transplantation assays. To investigate the mechanism of miR-29a action, we performed transcriptomal profiling of miR-29a null HSCs and found that miR-29a null HSCs exhibit a gene expression pattern more similar to wild-type committed progenitors than wild-type HSCs. We identified Dnmt3a as one dysregulated miR-29a target as showing increased expression in miR-29a null HSCs, and haplodeficiency of Dnmt3a partly restores miR-29a deficient HSC function. In order to test the requirement for miR-29a in myeloid leukemogenesis, we transduced miR-29a deficient Lin-c-Kit+Sca-1+ (LSK) cells with the oncogenic MLL-AF9 fusion gene, and found that the development of AML from these cells was markedly delayed. We found that Meis1, Ccna2, Hoxa5 and Hoxa9 transcripts were significantly downregulated in miR-29a null LSK cells compared to WT LSK cells, but they were similarly induced in MLL-AF9 transformed c-Kit+Mac-1+ cells. To investigate whether the epigenetic dysregulation resulting from miR-29a deletion may underlie this transformation-resistant phenotype, we examined the distribution of the active epigenetic mark, H3K79me2, in c-Kit+Mac-1+ miR-29a null cells using a ChIP-Seq assay. After analyzing H3K39me2 peaks using model-based analysis of ChIP-Seq, we identified 4281 and 3649 genes associated with this active epigenetic mark using a duplicated ChIP-Seq analysis, with an overlap of 3164 genes (66.39%). Using public available ChIP-Seq data, we compared our results with the genes associated with the H3K79me2 mark in normal immature LSK cells (9282 genes), granulocyte-macrophage progenitors (GMPs, 8556 genes), and MLL-AF9 transformed GMP cells (L-GMP, 8578 genes), and found 4234, 4111, 4046, and 4766 genes were also identified have an active H3K79me2 mark in MLL-AF9 transformed miR-29a null cells. These data indicate that miR-29a loss inactivates a large group of genes activated by the MLL-AF9 oncogene. We also found that 379 genes were associated with H3K79me2 peaks in both normal LSK and MLL-AF9 transformed miR-29a null c-Kit+Mac-1+ cells, but were absent of this epigenetic marker in L-GMP, suggesting that these genes confer self-renewal and proliferation capacities to normal HSCs. In addition, suppression of these genes are important in leukemic transformation by MLL-AF9, and finally the reactivation of these genes in miR-29a null cells compromises the leukemogenesis ability of MLL-AF9. Interestingly, out of these 379 genes, we were able to identify 18 genes that were potential miR-29a targets including Akt3, Map4k4, Dnmt3a, et al. This suggests the direct and indirect effects from miR-29a in regulating its target gene networks at transcriptional and post-transcriptional levels. Our studies found miR-29a is essential in maintaining HSC function and loss of miR-29a abrogate the leukemogenesis capacity of MLL-AF9. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2002 ◽  
Vol 99 (2) ◽  
pp. 488-498 ◽  
Author(s):  
In-Kyung Park ◽  
Yaqin He ◽  
Fangming Lin ◽  
Ole D. Laerum ◽  
Qiang Tian ◽  
...  

Abstract Hematopoietic stem cells (HSCs) have self-renewal capacity and multilineage developmental potentials. The molecular mechanisms that control the self-renewal of HSCs are still largely unknown. Here, a systematic approach using bioinformatics and array hybridization techniques to analyze gene expression profiles in HSCs is described. To enrich mRNAs predominantly expressed in uncommitted cell lineages, 54 000 cDNA clones generated from a highly enriched population of HSCs and a mixed population of stem and early multipotent progenitor (MPP) cells were arrayed on nylon membranes (macroarray or high-density array), and subtracted with cDNA probes derived from mature lineage cells including spleen, thymus, and bone marrow. Five thousand cDNA clones with very low hybridization signals were selected for sequencing and further analysis using microarrays on glass slides. Two populations of cells, HSCs and MPP cells, were compared for differential gene expression using microarray analysis. HSCs have the ability to self-renew, while MPP cells have lost the capacity for self-renewal. A large number of genes that were differentially expressed by enriched populations of HSCs and MPP cells were identified. These included transcription factors, signaling molecules, and previously unknown genes.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 194-194
Author(s):  
Agatheeswaran Subramaniam ◽  
Mehrnaz Safaee Talkhoncheh ◽  
Kristijonas Zemaitis ◽  
Shubhranshu Debnath ◽  
Jun Chen ◽  
...  

Abstract The molecular mechanisms that govern hematopoietic stem cell (HSC) fate decisions remain incompletely defined. It has been a long-standing goal in the field to gain a better understanding of the genes and pathways that regulate the self-renewal ability of HSCs in order to develop optimal culture conditions in which HSCs can be expanded for clinical benefit. Lysine-specific histone demethylase 1A (LSD1), also known as lysine (K)-specific demethylase 1A (KDM1A), regulates gene expression by specifically eliminating di- and mono-methyl groups on H3 lysine K4 and K9 residues. Studies in mice have shown that, conditional knockdown of LSD1 results in an expansion of bone marrow hematopoietic stem and progenitor cells (HSPCs). However, a complete knockout of LSD1 results in pancytopenia and a dramatic reduction of HSPCs. In this study, we asked whether inhibition of LSD1 would improve the maintenance or expansion of cultured human HSCs derived from umbilical cord blood (UCB). To evaluate the effect of LSD1 inhibition we treated UCB CD34+ cells with three different LSD1 inhibitors (2-PCPA, GSK-LSD1 and RN1) at their respective IC50 values (20µM, 16nM and 70nM) and expanded the cultures for 6 days in serum free medium supplemented with stem cell factor (SCF), thrombopoietin (TPO) and FMS-like tyrosine kinase 3 ligand (FLT3L). Since we (Subramaniam et. al. Haematologica 2018) and others recently have shown that EPCR is a reliable cell surface marker to track UCB derived HSCs during in vitro culture, we quantified the numbers of CD34+EPCR+ cells using flow cytometry and compared to DMSO treated control cultures. Remarkably, treatment with either 2-PCPA or GSK-LSD1 resulted in a more than 10-fold increase of CD34+EPCR+ cells, compared to controls. Further, from dose response experiments we found that 2-PCPA at 1.25 µM expanded the total CD34+ cell population more efficiently than GSK-LSD1, and we therefore used 2-PCPA at this concentration for the subsequent experiments. Using carboxyfluorescein succinimidyl ester (CFSE) labeling to monitor cell division, we found that 2-PCPA did not significantly alter the cell division rate of the cultured CD34+ cells compared to DMSO controls, suggesting that the expansion of CD34+EPCR+ cells is not due to increased proliferation, and that LSD1 inhibition rather may prevent differentiation of the immature HSPCs. To further explore this, we mapped the early transcriptional changes triggered by 2-PCPA in HSCs using gene expression profiling of CD34+CD38-CD45RA-CD90+ cells following 24 hours of culture with or without 2-PCPA treatment. We found that gene sets corresponding to UCB and fetal liver HSCs were significantly enriched upon 2-PCPA treatment compared to DMSO control (Normalized Enrichment Score (NES)=1.49, q=0.05). This suggest that 2-PCPA indeed restricts differentiation and preserves the HSC state upon ex vivo culture. Strikingly, the gene signature induced by LSD1 inhibition was highly similar to that induced by the known HSC expanding compound UM171 (NES=1.43, q=0.11). UM171 is a molecule with unknown target and has also been shown to dramatically expand the EPCR+ population in culture. Finally, the frequency of functional HSCs in DMSO and 2-PCPA treated cultures were measured using limiting dilution analysis (LDA). LDA was performed by transplanting 4 doses (day 0 equivalents of 20000, 1000, 300 and 100 CD34+ cells) of DMSO and 2-PCPA treated cultures into sub lethally irradiated (300cGy) NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice. Human CD45+ cell engraftment in the bone marrow was analyzed 18 weeks' post transplantation. Cultures treated with 2-PCPA showed a 5-fold higher content of long-term repopulating cells per day 0 CD34+ cell equivalent compared to the DMSO control (1 in 615 vs 1 in 3041, p=0.03). Thus, the 2-PCPA treated cultures had significantly enhanced HSCs numbers. To determine the absolute expansion rate, we are currently performing LDA using uncultured cells as well. Altogether our data suggest that LSD1 inhibition supports both phenotypic and functional HSCs in culture by preserving the immature state. Currently we are exploring the possibilities of using LSD1 inhibitors in combination with other known modifiers of HSC expansion. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document