Discriminative HMGA2 Isoform Expression in CD15+ Granulocytic Cells in Myeloid Metaplasia with Myelofibrosis (MMM).

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2429-2429
Author(s):  
Olivier Pierre-Louis ◽  
Joris Andrieux ◽  
Christophe Desterke ◽  
Eric Lippert ◽  
Vincent Praloran ◽  
...  

Abstract MMM is a myeloproliferative disorder characterized by extramedullary hematopoiesis and reactive myelofibrosis. Recently, HMGA2 dysregulation has been demonstrated in 2 MMM patients showing 12q15 rearrangement and confirmed in 25 consecutive MMM patients without cytogenetic abnormalities (Andrieux, 2004). HMGA2 proteins belong to the high mobility group A (HMGA) family of architectural transcription factors regulating the expression of several genes. As MMM is a clonal disorder of CD34+ hematopoietic progenitors, we analyzed HMGA2 expression in peripheral blood sub-populations of 5 MMM patients and 7 healthy donors to determine in which sub-population HMGA2 was dysregulated. RNA was extracted from peripheral blood mononuclear cells (PBMC) and CD15+ granulocytic cells (PBCD15+) separated through Ficoll centrifugation or from immunomagnetically selected circulating CD34+ cells (PBCD34+). Real-time quantitative PCR (RQ-PCR) using Taqman technology was performed on cDNA. As different isoforms were described in malignancies, we used two primer sets : the first one allowing the amplification of all HMGA2 isoforms (exon 1 to 3) (HMGA2 1–3), the second one allowing the amplification of the full length HMGA2 isoform (exon 1 to 5)(HMGA2 1–5). In healthy donors and in MMM, PBMC HMGA2 expression levels were heterogeneous, depending of the cellular sub-population purity. HMGA2 1–3 or HMGA2 1–5 were both expressed in MMM and normal PBCD34+ cells, but with a higher expression level for HMGA2 1–3 as compared to HMGA2 1–5. Furthermore, both HMGA2 1–3 and HMGA2 1–5 expression levels were significantly increased in PBCD34+ MMM patients (p<10−6) compared to healthy donors. In MMM, HMGA2 expression level was significantly increased (p<10−5) in PBCD15+ as compared to PBCD34+. Moreover, PBCD15+ HMGA2 1–3 expression level was significantly higher in MMM patients compared to PBCD15+ from healthy donors (p<10−7). A persistence of HMGA2 1–5 expression was only observed in MMM PBCD15+ but was undetectable neither in normal PB neutrophils (purity>98%) nor in PB neutrophils from other myeloproliferative disorders (Polycythemia Vera and Essential Thrombocythemia). To determine if HMGA2 level was modified during hematopoietic differentiation, we quantified HMGA2 1–3 and 1–5 isoform expression on purified healthy donor PB CD34+ and MMM CD34+ before and after culture with specific lineage growth factors (12 day-culture). Primary results showed that both HMGA2 isoform expression levels were higher during granulocytic differentiation. Our results demonstrate that HMGA2 1–5 isoform is discriminately overexpressed in MMM PBCD15+. The persistence of this HMGA2 full length expression in MMM myeloid lineage could be considered as a marker of the disease.

2019 ◽  
Vol 16 (3) ◽  
pp. 265-271 ◽  
Author(s):  
Mahsa Taeb ◽  
Abdollah Jafarzadeh ◽  
Seyed Shahabeddin Mortazavi-Jahromi ◽  
Nahid Zainodini ◽  
Mohammad Reza Mirzaei ◽  
...  

Objective: This research aimed to study the anti-aging and anti-inflammatory effects of low and high doses of the β-D-mannuronic (M2000) on gene expression of enzymes involved in oxidative stress (including SOD2, GST, GPX1, CAT, iNOS, and MPO) in peripheral blood mononuclear cells (PBMCs) of healthy donors under in vitro conditions. Methods: The PBMCs were separated and the RNAs were then extracted and the cDNAs synthesized, and expression levels of the mentioned genes were detected by qRT-PCR. Results: Our results indicated that the high dose of this drug could significantly reduce the expression level of the SOD2 gene compared to the lipopolysaccharide (LPS) group (p < 0.0001). Moreover, it was found that the high dose of this drug could significantly decrease the expression level of the GST gene compared to the LPS group (p < 0.0001). However, no significant reductions were observed in expression levels of the CAT and GPX1 genes compared to the LPS group. Furthermore, our data revealed that the level of iNOS and MPO gene expression was significantly reduced, in both doses of M2000, respectively, compared to the LPS group (p < 0.0001). Conclusion: This research showed that M2000 as a novel NSAID with immunosuppressive properties could modify oxidative stress through lowering expression levels of the SOD2, GST, iNOS, and MPO genes compared to the healthy expression levels, with a probable reduction of the risk of developing inflammatory diseases related to age and aging.


2018 ◽  
Vol 45 (3) ◽  
pp. 310-319 ◽  
Author(s):  
Smadar Gertel ◽  
Gidi Karmon ◽  
Eszter Szarka ◽  
Ora Shovman ◽  
Esther Houri-Levi ◽  
...  

Objective.Anticitrullinated protein antibodies (ACPA) have major diagnostic significance in rheumatoid arthritis (RA). ACPA are directed against different citrullinated antigens, including filaggrin, fibrinogen, vimentin, and collagen. The presence of ACPA is associated with joint damage and extraarticular manifestations, suggesting that ACPA may have a significant role in the pathogenesis of RA.Methods.To verify the effect of ACPA on RA-immune cells, peripheral blood mononuclear cells (PBMC) from cyclic citrullinated peptide (CCP)–positive patients with RA and healthy controls were cocultured in vitro with ACPA. ACPA-positive stained cells were analyzed by flow cytometry and the effect of ACPA on mRNA expression levels was evaluated by real-time PCR. We tested whether the stimulatory effects induced by ACPA could be inhibited by the addition of a new multiepitope citrullinated peptide (Cit-ME).Results.We found that ACPA bind specifically to PBMC from CCP-positive patients with RA through the Fab portion. ACPA induce upregulation of pathogenic cytokine expression (4- to 13-fold increase) in PBMC derived from CCP-positive patients with RA. Moreover, ACPA upregulated IL-1β and IL-6 mRNA expression levels by 10- and 6-fold, respectively, compared to control IgG. Cit-ME, a genuine ligand of ACPA, inhibited the ACPA-induced upregulation of IL-1β and IL-6 by 30%.Conclusion.ACPA bind to a limited percentage of PBMC and upregulate inflammatory cytokine expression, suggesting that ACPA is involved in RA pathogenesis. Targeting ACPA to decrease their pathogenic effects might provide a novel direction in developing therapeutic strategies for RA.


2019 ◽  
Vol 17 ◽  
pp. 205873921882022
Author(s):  
Ge Zhang ◽  
Wei Huang ◽  
Ying Wang

The study aimed to detect the expression level of interleukin-37 (IL-37) in patients with rheumatoid arthritis (RA) and explore its clinical significance. A total of 40 peripheral blood samples from active and stable RA patients were collected (40 patients with RA), and peripheral blood from 40 healthy volunteers was used as the control group. Peripheral blood serum and peripheral blood mononuclear cells (PBMCs) were isolated. The expression of IL-37 mRNA in PBMCs was detected by real-time fluorescence quantitative PCR. Serum levels of IL-37, rheumatoid factor (RF), and anticyclic citrullinated peptide antibody (CCP) were measured by enzyme-linked immunosorbent assay (ELISA). The results were then calculated and analyzed. The results showed that expression of IL-37 mRNA in the PBMCs of patients with RA was significantly higher than that in the control group ( P < 0.05). Expression of IL-37 mRNA in the PBMCs of the active period group was significantly higher than that in the stable period group ( P < 0.05). IL-37 levels in patients with RA were significantly higher than those of the control group ( P < 0.05). IL-37 levels in the active period group were also significantly higher than those of the stable period group ( P < 0.05). The comparative analysis of RF and anti-CCP antibody levels showed that IL-37 was positively correlated with RF and anti-CCP levels in patients with RA. In conclusion, the expression level of IL-37 in peripheral blood of RA patients was significantly higher than that of normal control group, and it was correlated with RF and CCP antibody levels, indicating that IL-37 plays an important role in the development of RA.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Xiaoqian Fu ◽  
Guofu Zhang ◽  
Yansong Liu ◽  
Ling Zhang ◽  
Fuquan Zhang ◽  
...  

Abstract Background Schizophrenia is a severe, heritable, and refractory psychiatric disorder. Several studies have shown that the disrupted in schizophrenia 1 (DISC1) gene is closely associated with schizophrenia by its role in neuronal morphology, synaptic function, brain development, and dopamine homeostasis etc. This study intended to investigate the expression levels of DISC1 gene in schizophrenia patients compared with healthy controls, and the expression variation of DISC1 gene before and after antipsychotic treatment in schizophrenia patients. Methods In this study, we compared DISC1 expression levels in blood of 48 healthy controls, and 32 schizophrenia patients before and after 12 weeks of antipsychotic treatment using real-time quantitative PCR (RT-qPCR) analysis. Results The expression levels of DISC1 gene in peripheral blood mononuclear cells of schizophrenia patients before antipsychotic treatment were higher than those in healthy controls (P < 0.01); whereas after antipsychotic treatment, the expression levels of DISC1 gene in peripheral blood mononuclear cells of schizophrenia patients still remained increased (P < 0.01). Conclusions Our study provided further support for the involvement of DISC1 in the development of schizophrenia.


Sign in / Sign up

Export Citation Format

Share Document