Mechanisms of Apoptosis Induction by BH3 Inhibitor ABT-737 in AML.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 244-244
Author(s):  
Michael Andreeff ◽  
Rooha Contractor ◽  
Peter P. Ruvolo ◽  
Xingming Deng ◽  
Ismael Samudio ◽  
...  

Abstract Bcl2 family proteins are key regulators of apoptosis. Aberrations in Bcl2 levels are known to promote tumorigenesis and chemoresistance. Thus, strategies to target Bcl2 will likely provide effective therapies for malignancies such as acute myeloid leukemia (AML). In this report, we investigate mechanisms of action of the novel small molecule Bcl2 inhibitor ABT-737 in AML. ABT-737 effectively killed AML patient blast cells and colony-forming cell lines at nanomolar concentrations with no effect on normal hematopoietic cells. Notably, CD34+38−123+ AML stem cells are highly sensitive to the compound. ABT-737-induced apoptosis is initiated by disruption of Bcl2:Bax dimers and activation of the intrinsic apoptotic pathway. ABT-737 works synergistically with chemotherapeutic agents such as ara-C and doxorubicin. To investigate the role of Bcl-2 phosphorylation in the sensitivity to BH3 inhibitor, we used IL-3 dependent NSF.N1/H7 mouse myeloid cells modified by site-directed mutagenesis to produce various Bcl-2 phospho-mutants. NSF.N1/H7 cells stably transfected with phosphomimetic T69E/S70E/S87E (EEE) Bcl-2 mutants were resistant to ABT-737 (IC50>500 nM) as compared to cells expressing wt-Bcl-2 or the nonphosphorylatable T69A/S70A/S87A (AAA) Bcl2 mutants (IC50s of 50 and 25 nM). Consistent with a mechanism whereby increased Bcl2 phosphorylation impedes ABT-737 suppression of Bcl2 dimerization with Bax, ABT-737 potently blocked Bcl2:Bax association in cells expressing exogenous WT Bcl2 and AAA mutant Bcl2 but not in cells expressing exogenous phosphomimetic EEE mutant Bcl2. Since the S70E phosphorylation site of Bcl-2 is a known ERK substrate, we examined combined effects of ABT-737 and MEK inhibitor PD98059 in OCI-AML3 cells resistant to ABT-737 alone. The combined activity of PD98059 and ABT-737, evaluated by isobologram analysis, revealed a striking synergistic interaction between the MEK and BH3 inhibitors, with combination indices (CI) of 0.08±0.003. OCI-AML3 cells exhibit the highest expression of Mcl-1 among the acute leukemia cell lines tested. We propose that loss of Mcl-1 expression as a result of suppression of ERK may also be involved in the ability of PD98059 to enhance ABT-737-induced apoptosis. siRNA to Mcl-1 strikingly sensitized OCI-AML3 cells to ABT-induced apoptosis (14% apoptosis in parental cells at 2.5μM ABT-737, 64% apoptosis in siRNA-transfected cells at 10-fold lower concentration of 0.25μM). We have further demonstrated that ABT-737 reduced leukemia burden and significantly (p=0.0018) prolonged survival of mice in an in vivo mouse model. These findings suggest that: 1) ABT-737 reduces apoptosis through disruption of Bcl2:Bax heterodimers; 2) its activity is limited by Bcl2 phosphorylation and Mcl-1 overexpression; 3) combination with MEK inhibition results in inhibition of Bcl2 phosphorylation, downregulation of Mcl-1 and dramatic enhancement of ABT-737-induced apoptosis in AML.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1841-1841
Author(s):  
Peter Rhein ◽  
Stefanie Scheid ◽  
Richard Ratei ◽  
Christian Hagemeier ◽  
Karl Seeger ◽  
...  

Abstract In the multicentric ALL-BFM (Berlin-Frankfurt-Munster) study, all patients are uniformly treated during the first week of induction therapy which uses glucocorticoids (GC) as the principal therapeutic agent. The GC response assessed at day 8 of therapy provides one of the basic parameters for further risk stratification. In spite of the clinical significance, molecular mechanisms of GC action in vivo are largely unknown. Our recent genome-wide analysis of gene expression in blasts persisting during induction therapy identified a common set of genes differentially expressed in blasts at day 8 (d8) and at diagnosis (d0) (n=457, false discovery rate <0.05). Expression changes indicated therapy-induced inhibition of cell cycling, expression shift towards normal mature B cells and downregulation of the apoptosis regulator Bcl-2. In the current study, we validated the key differences between d8 and d0 blasts at protein and cellular levels. DNA distribution and percentage of cycling blasts was determined by flow cytometry in a series of matched d8 and d0 samples (13 pts) and demonstrated the decreased proliferative activity of d8 cells (4.3-fold, p=0.014). Protein expression, investigated by flow cytometry in a total of 84 pts, demonstrated statistically significant expression decrease of the progenitor cell antigenes CD10, CD34 and TdT and expression increase of the B-cell antigene CD20 and the inflammatory response molecules CD11b and IFNGR1 (p<0.05). We were also able to confirm the lower expression values of the Bcl-2 protein in d8 blasts (p<0.05, n=57). Investigation of GC-sensitive B-lineage leukemia cell lines demonstrated that BCL-2 downregulation by GC was a pre-requisite of GC-induced apoptosis. Moreover, we found a considerable cross-correlation between viability, cell cycling and Bcl-2 expression levels. Upregulation of the Bcl-2 expression via IL-7 receptor signaling prevented GC-induced apoptosis in these cell lines. Collectively, GC therapy interferes with differentiation and proliferation programs in leukemic blasts which are closely related to the Bcl-2 specific apoptotic pathway.


2019 ◽  
Vol 20 (22) ◽  
pp. 5567
Author(s):  
Jan Torben Schille ◽  
Ingo Nolte ◽  
Eva-Maria Packeiser ◽  
Laura Wiesner ◽  
Jens Ingo Hein ◽  
...  

Current therapies are insufficient for metastatic prostate cancer (PCa) in men and dogs. As human castrate-resistant PCa shares several characteristics with the canine disease, comparative evaluation of novel therapeutic agents is of considerable value for both species. Novel isoquinolinamine FX-9 exhibits antiproliferative activity in acute lymphoblastic leukemia cell lines but has not been tested yet on any solid neoplasia type. In this study, FX-9′s mediated effects were characterized on two human (PC-3, LNCaP) and two canine (CT1258, 0846) PCa cell lines, as well as benign solid tissue cells. FX-9 significantly inhibited cell viability and induced apoptosis with concentrations in the low micromolar range. Mediated effects were highly comparable between the PCa cell lines of both species, but less pronounced on non-malignant chondrocytes and fibroblasts. Interestingly, FX-9 exposure also leads to the formation and survival of enlarged multinucleated cells through mitotic slippage. Based on the results, FX-9 acts as an anti-mitotic agent with reduced cytotoxic activity in benign cells. The characterization of FX-9-induced effects on PCa cells provides a basis for in vivo studies with the potential of valuable transferable findings to the benefit of men and dogs.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2584-2584
Author(s):  
Julie C. Watt ◽  
Marina Konopleva ◽  
Rooha Contractor ◽  
Ismael Samudio ◽  
David Harris ◽  
...  

Abstract GX15-070 is a novel cycloprodigiosin derived small molecule BH3 inhibitor that binds with moderate affinity to all antiapoptotic Bcl-2 family members, including Mcl-1, and is currently undergoing Phase I clinical trials in leukemias. In this study, we investigated the activity of GX15-070 in acute myeloid leukemia (AML) cell lines and primary AML samples. GX15-070 inhibited cell growth of HL-60, U937, OCI-AML3 and KG-1 cell lines at IC50’s of 0.1, 0.5, 0.5 and 2.5μM, respectively, at 72 hours. Neither overexpression of Bcl-2 or Bcl-XL nor loss of expression of Bax conferred resistance to GX15-070. GX15-070 inhibited Bim/Bcl-2 heterodimerization and induced association of activated Bak with Bax in OCI-AML3 cells, as demonstrated by co-immunoprecipitation studies using CHAPS buffer. This was associated with cytosolic release of cytochrome c followed by an increase in annexin positivity, caspase activation and a decrease in mitochondrial inner membrane potential. Notably, GX15-070 induced cytochrome c release from isolated mitochondria of leukemic cells. GX15-070 synergized with both AraC and the novel BH3 mimetic ABT-737 to induce apoptosis in OCI-AML3 cells, a notoriously chemoresistant cell line (GX15-070 and ABT-737 average CI value 0.3; GX15-070 and AraC average CI value 0.36). In 6/7 primary AML samples, GX15-070 induced apoptosis in CD34+ progenitor cells at an average IC50 of 3.6±1.2μM at 24 hours. GX15-070 potently inhibited clonogenic ability of AML blasts at sub-micromolar doses (58.5±10.6% CFU-Blast at 0.1μM and 38.1±10.5% at 0.25μM, n=7). In summary, BH3 inhibitor GX15-070 induces apoptosis in AML cells via inhibition of association of pro-survival Bcl-2 family proteins and BH3-only proteins, followed by Bax/Bak activation and initiation of the intrinsic apoptotic pathway. Hence, GX15-070 alone or in combination with chemotherapeutic agents may have utility in AML therapy.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 759-759
Author(s):  
Aaron D. Schimmer ◽  
Marcela Gronda ◽  
Zhiliang Wang ◽  
Kate Welsh ◽  
Clemencia Pinilla ◽  
...  

Abstract XIAP is a potent inhibitor of caspases 3, 7, and 9 and its over-expression renders malignant cells resistant to chemotherapy. Through an enzymatic derepression assay, we identified chemical XIAP antagonists, including 1396-12, based on a polyphenylurea pharmacophore (Cancer Cell, 1:25–35;2004). This compound binds and inhibits the caspase 3/7 inhibitory BIR2 domain of XIAP. Given the potential therapeutic utility of IAP inhibitors, we tested this XIAP antagonist in leukemia cell lines and primary patient samples. The XIAP antagonist 1396-12, but not the structurally related control compound, directly induced apoptosis in leukemia cell lines at low micromolar concentrations and sensitized leukemia cells to cytarabine. 1396-12 activated downstream caspases 3/7 prior to the activation of upstream caspases 8 and 9, and independent of Bcl-2 or caspase-8, consistent with the inhibition of the BIR2 domain of XIAP. To evaluate this XIAP antagonist as a potential novel therapy for acute myeloid leukemia (AML), primary AML blasts (n= 27), normal bone marrow mononuclear cells (n =1), or normal mobilized peripheral blood stem cells (PBSC) (n =6) were treated with increasing concentrations of 1396-12. Apoptosis was measured 24 hours after treatment by Annexin V staining. Median LD50 among the AML patient samples tested was 6 μM (range: 2μM to >40μM). The XIAP antagonist 1396-12 induced apoptosis of primary AML samples with a LD50 ≥ 10μM in 16 of 27 (60%) samples and with a LD50 >40μM in 7 of 27 (26%) samples. In contrast, 1396-12 was less toxic to the normal PBSC or marrow with a LD50>40μM in all normal samples tested. As a comparison, the inactive control compound was not toxic to any of the AML or normal samples at concentrations up to 40μM. In addition to the short-term cytotoxicity assays, the effects of 1396-12 on AML and normal samples were evaluated in colony formation assays. The XIAP antagonist inhibited clonogenic survival in 4 AML samples tested with a mean LD50 of 4 ± 0.8μM. Treatment with 1396-12 also reduced colony formation by 2 normal PBSC samples with LD50’s of 8.5 ± 0.3μM and 5.6 ± 0.4μM. In the normal PBSC samples, both BFU-E and CFU-GM lineages were equally reduced after treatment with the XIAP antagonist. Treatment with the control compound did not reduce colony growth in the AML or normal samples. Among the primary AML samples, response to the XIAP inhibitors correlated with XIAP protein levels. Low to absent levels of XIAP were associated with a higher probability of resistance to treatment with XIAP inhibitors (p =0.04, by logistic regression analysis). In conclusion, polyphenylurea-based XIAP antagonists directly induce apoptosis in leukemia cells and patient samples at low micromolar concentrations through a mechanism of action distinct from conventional chemotherapeutic agents. These antagonists can be used as biological tools to understand the role of IAPs in normal and malignant hematopoietic cells. They may also serve as lead compounds for the development of useful therapies for the treatment of leukemia and other malignancies, but their potential hematologic toxicity will have to be carefully evaluated in phase I clinical trials.


Author(s):  
Thomson Patrick Joseph ◽  
Warren Chanda ◽  
Abdullah Faqeer Mohammad ◽  
Sadia Kanwal ◽  
Samana Batool ◽  
...  

Lp16-PSP from Lentinula edodes strain C91-3 has been reported previously in our laboratory to have selective cytotoxic activity against a panel of human cell lines. Herein, we have used several parameters in order to characterize the Lp16-PSP-induced cell death using HL-60 as model cancer. The results of phase contrast microscopy, nuclear examination, DNA fragmentation detection and flow cytometry revealed that high doses of Lp16-PSP resulted in the induction of apoptosis in HL-60 cells. The colorimetric assay showed the activation of caspase-8, -9 and -3 cascade highlighting the involvement of Fas/FasL-related pathway. Whereas, western blot revealed the cleavage of caspase-3, increased expression of Bax, the release of cytochrome c and decreased expression of Bcl-2 in a dose-dependent manner, suggesting the intrinsic pathway might be involved in Lp16-PSP-induced apoptosis either. Low doses of Lp16-PSP resulted in the anchorage-independent growth inhibition, induction of G1 phase arrest accompanied by the increased expression of p21WAF1/CIP1 along with the decreased expression of cyclin D, E, and cdk6. Our findings suggest that induction of apoptosis and p21WAF1/CIP1 mediated G1 arrest might be one of the mechanisms of the action of Lp16-PSP, however, further investigations on multiple leukemia cell lines and in vivo models are of ultimate need.


Author(s):  
D. W. Fairbain ◽  
M.D. Standing ◽  
K.L. O'Neill

Apoptosis is a genetically defined response to physiological stimuli that results in cellular suicide. Features common to apoptotic cells include chromatin condensation, oligonucleosomal DNA fragmentation, membrane blebbing, nuclear destruction, and late loss of ability to exclude vital dyes. These characteristics contrast markedly from pathological necrosis, in which membrane integrity loss is demonstrated early, and other features of apoptosis, which allow a non-inflammatory removal of dead and dying cells, are absent. Using heat shock-induced apoptosis as a model for examining stress response in cells, we undertook to categorize a variety of human leukemias and lymphomas with regard to their response to heat shock. We were also interested in determining whether a common temporal order was followed in cells dying by apoptosis. In addition, based on our previous results, we investigated whether increasing heat load resulted in increased apoptosis, with particular interest in relatively resistant cell lines, or whether the mode of death changed from apoptosis to necrosis.


Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2012
Author(s):  
Kathryn M. Appleton ◽  
Charuta C. Palsuledesai ◽  
Sean A. Misek ◽  
Maja Blake ◽  
Joseph Zagorski ◽  
...  

The Ras/MEK/ERK pathway has been the primary focus of targeted therapies in melanoma; it is aberrantly activated in almost 80% of human cutaneous melanomas (≈50% BRAFV600 mutations and ≈30% NRAS mutations). While drugs targeting the MAPK pathway have yielded success in BRAFV600 mutant melanoma patients, such therapies have been ineffective in patients with NRAS mutant melanomas in part due to their cytostatic effects and primary resistance. Here, we demonstrate that increased Rho/MRTF-pathway activation correlates with high intrinsic resistance to the MEK inhibitor, trametinib, in a panel of NRAS mutant melanoma cell lines. A combination of trametinib with the Rho/MRTF-pathway inhibitor, CCG-222740, synergistically reduced cell viability in NRAS mutant melanoma cell lines in vitro. Furthermore, the combination of CCG-222740 with trametinib induced apoptosis and reduced clonogenicity in SK-Mel-147 cells, which are highly resistant to trametinib. These findings suggest a role of the Rho/MRTF-pathway in intrinsic trametinib resistance in a subset of NRAS mutant melanoma cell lines and highlight the therapeutic potential of concurrently targeting the Rho/MRTF-pathway and MEK in NRAS mutant melanomas.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4417
Author(s):  
Rabin Neupane ◽  
Saloni Malla ◽  
Mariam Sami Abou-Dahech ◽  
Swapnaa Balaji ◽  
Shikha Kumari ◽  
...  

A novel series of 4-anilinoquinazoline analogues, DW (1–10), were evaluated for anticancer efficacy in human breast cancer (BT-20) and human colorectal cancer (CRC) cell lines (HCT116, HT29, and SW620). The compound, DW-8, had the highest anticancer efficacy and selectivity in the colorectal cancer cell lines, HCT116, HT29, and SW620, with IC50 values of 8.50 ± 2.53 µM, 5.80 ± 0.92 µM, and 6.15 ± 0.37 µM, respectively, compared to the non-cancerous colon cell line, CRL1459, with an IC50 of 14.05 ± 0.37 µM. The selectivity index of DW-8 was >2-fold in colon cancer cells incubated with vehicle. We further determined the mechanisms of cell death induced by DW-8 in SW620 CRC cancer cells. DW-8 (10 and 30 µM) induced apoptosis by (1) producing cell cycle arrest at the G2 phase; (2) activating the intrinsic apoptotic pathway, as indicated by the activation of caspase-9 and the executioner caspases-3 and 7; (3) nuclear fragmentation and (4) increasing the levels of reactive oxygen species (ROS). Overall, our results suggest that DW-8 may represent a suitable lead for developing novel compounds to treat CRC.


2018 ◽  
Vol 475 (21) ◽  
pp. 3471-3492 ◽  
Author(s):  
Iru Paudel ◽  
Sean M. Hernandez ◽  
Gilda M. Portalatin ◽  
Tara P. Chambers ◽  
Jeremy W. Chambers

The occurrence of chemotherapy-resistant tumors makes ovarian cancer (OC) the most lethal gynecological malignancy. While many factors may contribute to chemoresistance, the mechanisms responsible for regulating tumor vulnerability are under investigation. Our analysis of gene expression data revealed that Sab, a mitochondrial outer membrane (MOM) scaffold protein, was down-regulated in OC patients. Sab-mediated signaling induces cell death, suggesting that this apoptotic pathway is diminished in OC. We examined Sab expression in a panel of OC cell lines and found that the magnitude of Sab expression correlated to chemo-responsiveness; wherein, OC cells with low Sab levels were chemoresistant. The Sab levels were reflected by a corresponding amount of stress-induced c-Jun N-terminal kinase (JNK) on the MOM. BH3 profiling and examination of Bcl-2 and BH3-only protein concentrations revealed that cells with high Sab concentrations were primed for apoptosis, as determined by the decrease in pro-survival Bcl-2 proteins and an increase in pro-apoptotic BH3-only proteins on mitochondria. Furthermore, overexpression of Sab in chemoresistant cells enhanced apoptotic priming and restored cellular vulnerability to a combination treatment of cisplatin and paclitaxel. Contrariwise, inhibiting Sab-mediated signaling or silencing Sab expression in a chemosensitive cell line resulted in decreased apoptotic priming and increased resistance. The effects of silencing on Sab on the resistance to chemotherapeutic agents were emulated by the silencing or inhibition of JNK, which could be attributed to changes in Bcl-2 protein concentrations induced by sub-chronic JNK inhibition. We propose that Sab may be a prognostic biomarker to discern personalized treatments for OC patients.


Author(s):  
Yudi Miao ◽  
Behnam Mahdavi ◽  
Mohammad Zangeneh

IntroductionThe present study investigated the anti-acute myeloid leukemia effects of Ziziphora clinopodides Lam leaf aqueous extract conjugated cadmium nanoparticles.Material and methodsTo synthesize CdNPs, Z. clinopodides aqueous extract was mixed with Cd(NO3)2 .4H2O. The characterization of the biosynthesized cadmium nanoparticles was carried out using many various techniques such as UV-Vis. and FT-IR spectroscopy, XRD, FE-SEM, and EDS.ResultsThe uniform spherical morphology of NPs was proved by FE-SEM images with NPs the average size of 26.78cnm. For investigating the antioxidant properties of Cd(NO3)2, Z. clinopodides, CdNPs, and Daunorubicin, the DPPH test was used. The cadmium nanoparticles inhibited half of the DPPH molecules in a concentration of 196 µg/mL. To survey the cytotoxicity and anti-acute myeloid leukemia effects of Cd(NO3)2, Z. clinopodides, CdNPs, and Daunorubicin, MTT assay was used on the human acute myeloid leukemia cell lines i.e., Murine C1498, 32D-FLT3-ITD, and Human HL-60/vcr. The IC50 of the cadmium nanoparticles was 168, 205, and 210 µg/mL against Murine C1498, 32D-FLT3-ITD, and Human HL-60/vcr cell lines, respectively. In the part of in vivo study, DMBA was used for inducing acute myeloid leukemia in mice. CdNPs similar to daunorubicin ameliorated significantly (p≤0.01) the biochemical, inflammatory, RBC, WBC, platelet, stereological, histopathological, and cellular-molecular parameters compared to the other groups.ConclusionsAs mentioned, the cadmium nanoparticles had significant anti-acute myeloid leukemia effects. After approving the above results in the clinical trial studies, these cadmium nanoparticles can be used as a chemotherapeutic drug to treat acute myeloid leukemia in humans.


Sign in / Sign up

Export Citation Format

Share Document