Functional Platelet Counting in Patients with Renal, Haematological and Cardiological Disease Using Blood Collecting Bottles Coated with Collagen, Ristocetin and Arachidonic Acid.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3207-3207
Author(s):  
Graham Smith ◽  
Loida Sheridan-Smith ◽  
Margaret A. Smith ◽  
Sam Pambakian ◽  
Jim Campbell

Abstract Platelet function is a vital factor in preventing bleeding irrespective of circulating platelet number. As a result, patients often have their surgery cancelled due to taking Aspirin or related medications. Similarly, patients bleed in the ITU setting when their counts and humoral coagulation are normal. This raises the concept of exhausted platelets which is often difficult to prove. The availability of a bedside technique which enumerates patients’ "functional" platelets, which is reliable and reproducible, represents a major step forward in determining whether these patients require platelet transfusion. Helena Laboratories, Beaumont, Texas, US have produced blood collection bottles which are coated with platelet agonists equine collagen (C), risocetin (R) or arachidonic acid (AA) in addition to 3.2mg sodium citrate. Our group is the first in Europe to use these bottles in association with point of care testing instrumentation (Horiba ABX Pentra, Chicksands, Beds, England). Samples were taken from normal, renal dialysis, cardiac catheterisation, haematological and ITU patients into K2EDTA and the above bottles and treated identically prior to counting. Samples taken into K2EDTA served as baseline controls whilst free platelets in the synchronously taken agonist samples represented non functional platelets (the normal functional ones having aggregated onto the inside wall of the tube). Data on 54 normal subjects showed that, when using C, only 6.2+/−3.1% of platelets were non functional (NF). Similar figures were found for R and AA. In dialysis patients with eGFR 4–25mls/min (n=32), the R NF% was 58.07+/−17.59%. In a similar group of renal patients on dialysis and Aspirin (n=12), the R NF% was 60.55+/−21.86% which was not statistically different from the non Aspirin group (p=0.955). In cardiac patients, all of whom were on Aspirin, C NF% was 35.23+/−23.12%, AA NF% 51.94+/−23.5% and R NF% 51.53+/−19.04%. C vs AA showed a significant p-value of 0.003and C vs R p=0.002. AA vs R was not significant at p=0.94. These data show that ristocetin is a surprisingly sensitive method of detecting non functional platelets in renal and Aspirin users. Classically, ristocetin is not thought of being a detector of Aspirin effect although data from Sloand et al. JASN (1997) 8(5),799 shows that ristocetin may detect renal effect on platelet GpIb-IX (CD42b). These data demonstrate the potential value of ristocetin aggregation ex vivo in determining the need for platelet transfusion and may provide clinicians with an improved and more logical rationale for such an expensive therapy.

1991 ◽  
Vol 65 (03) ◽  
pp. 312-316 ◽  
Author(s):  
P Minuz ◽  
C Lechi ◽  
E Arosio ◽  
P Guzzo ◽  
M Zannoni ◽  
...  

SummaryEffects of picotamide (900 mg in 3 oral administrations for 7 days) on ex vivo and in vivo platelet T×A2 production and on platelet aggregation wpre evaluated in 8 patients with peripheral arteriopathy and in 8 normal subjects. Picotamide significantly reduced ADP-induced platelet aggregation, but had no effect on that induced by arachidonic acid or the thromboxane analogue U46619. Though ex vivo platelet T×A2 production (T×B2 concentration after arachidonic-acid-induced aggregation) was reduced from 946 ± 141 (mean ± SD) to 285 ± 91 ng/ml in controls and from 1515 ± 673 to 732 ± 420 ng/ml in patients with arteriopathy, there was no effect on urinary excretion of 2,3-dinor-T×B2 (in vivo indicator of platelet T×A2 production), or on in vivo PGI2 production (urinary excretion of 6-keto-PGF1α and 2,3-dinor-6-keto-PGF1α). In the same subjects, single-dose aspirin reduced ex vivo T×B2 production by at least 98% and 2,3-dinor-T×B2 excretion from 116.7 ± 61.4 to 32.6 ± 17.0 nglg creatinine in control subjects, and from 156.3 ± 66.1 to 59.1 ± 19.2 ng/g creatinine in patients with peripheral arteriopathy. Our data suggest that inhibition of platelet T×A2 production in vivo may not be picotamide’s main mechanism of action.


Author(s):  
T. K. Teal ◽  
M. Reed ◽  
P. E. Stevens ◽  
E. J. Lamb

Background: The stability of parathyroid hormone (PTH) in blood ex vivo is a significant practical problem for laboratories and clinicians. Several studies have suggested that PTH is more stable in blood collected into a potassium edetate (EDTA) preservative. Methods: To confirm that this was applicable to renal dialysis patients using our assay (Nichols chemiluminescence), we examined PTH stability in 13 patients with end-stage renal failure using three different blood collection tubes. Results: PTH remained stable in EDTA plasma for up to 48 h at room temperature. PTH was significantly reduced in serum collected into plain tubes after 2 h, and after 4 h in serum collected into serum separator tubes, at room temperature. Conclusion: In the assessment of renal osteodystrophy, the use of EDTA plasma can confer significant benefit, especially in busy laboratories where rapid frozen separation of blood may be hard to achieve.


1992 ◽  
Vol 68 (05) ◽  
pp. 486-494 ◽  
Author(s):  
Malou Philips ◽  
Anne-Grethe Juul ◽  
Johan Selmer ◽  
Bent Lind ◽  
Sixtus Thorsen

SummaryA new assay for functional plasminogen activator inhibitor 1 (PAI-1) in plasma was developed. The assay is based on the quantitative conversion of PAI-1 to urokinase-type plasminogen activator (u-PA)-PAI-l complex the concentration of which is then determined by an ELISA employing monoclonal anti-PAI-1 as catching antibody and monoclonal anti-u-PA as detecting antibody. The assay exhibits high sensitivity, specificity, accuracy, and precision. The level of functional PAI-1, tissue-type plasminogen activator (t-PA) activity and t-PA-PAI-1 complex was measured in normal subjects and in patients with venous thromboembolism in a silent phase. Blood collection procedures and calibration of the respective assays were rigorously standardized. It was found that the patients had a decreased fibrinolytic capacity. This could be ascribed to high plasma levels of PAI-1. The release of t-PA during venous occlusion of an arm for 10 min expressed as the increase in t-PA + t-PA-PAI-1 complex exhibited great variation and no significant difference could be demonstrated between the patients with a thrombotic tendency and the normal subjects.


1989 ◽  
Vol 62 (03) ◽  
pp. 1034-1039 ◽  
Author(s):  
Jan S Brunkwall ◽  
James C Stanley ◽  
Timothy F Kresowik ◽  
Linda M Graham ◽  
William E Burkel ◽  
...  

SummaryRegulation of prostanoid release from ex vivo perfused vessel segments is not fully understood. A series of perfusion experiments were performed with canine arteries and veins to define certain regulatory phenomena. Arteries were perfused with pulsatile flow of 90 ml/min at a pressure of 100 mmHg, and veins with nonpulsatile flow of 90 ml/min at a pressure of 7 mmHg. Segments were perfused with Hanks' balanced salt solution for five 15-min periods with the perfusate exchanged after each study period. With onset of perfusion, there was an initial burst of prostacyclin release to 127 ± 40 pg/mm2, declining to 32 ± 10 pg/mm2 after 60 minutes (p <0.005). If perfusion continued for 5.5 hours, there was a stable release period between 1 and 3 hours, followed by a very slow decline. At that time addition of arachidonic acid (AA) increased prostacyclin release six-fold (p <0.01). Vessels perfused for 1 hour and then rested for another hour, responded to reperfusion at the second onset of flow with a two-fold increase in prostacyclin release (p <0.01). Vessels perfused with thrombin, bradykinin or A A (either added to each perfusate or only to the last perfusate) exhibited greater prostacyclin release than did control segments. Release of thromboxane steadily declined with time in all parts of the study, and only increased with the addition of A A to the perfusate. These data indicate that vessel segments subjected to ex vivo perfusion do not maximally utilize enzyme systems responsible for prostanoid production, and after 1 hour perfusion have not depleted their phospholipids, and maintain functioning levels of phospholipase and cyclooxygenase activity. This perfusion model allows for the study of prostacyclin and thromboxane release from arteries and veins and their response to various drugs and other stimuli.


1992 ◽  
Vol 67 (02) ◽  
pp. 258-263 ◽  
Author(s):  
Raffaele De Caterina ◽  
Rosa Sicari ◽  
An Yan ◽  
Walter Bernini ◽  
Daniela Giannessi ◽  
...  

SummaryIndobufen is an antiplatelet drug able to inhibit thromboxane production and cyclooxygenase-dependent platelet aggregation by a reversible inhibition of cyclooxygenase. Indobufen exists in two enantiomeric forms, of which only d-indobufen is active in vitro in inhibiting cyclooxygenase. In order to verify that also inhibition of platelet function is totally accounted for by d-indobufen, ten patients with proven coronary artery disease (8 male, 2 female, age, mean ± S.D., 58.7 ± 7.5 years) were given, in random sequence, both 100 mg d-indobufen and 200 mg dl-indobufen as single administrations in a double-blind crossover design study with a washout period between treatments of 72 h. In all patients thromboxane (TX) B2 generation after spontaneous clotting (at 0, 1, 2, 4, 6, 8, 12, 24 h), drug plasma levels (at the same times), platelet aggregation in response to ADP, adrenaline, arachidonic acid, collagen, PAF, and bleeding time (at 0, 2, 12 h) were evaluated after each treatment. Both treatments determined peak inhibition of TXB2 production at 2 h from administration, with no statistical difference between the two treatments (97 ±3% for both treatments). At 12 h inhibition was 87 ± 6% for d-indobufen and 88 ± 6% for dl-indobufen (p = NS). Inhibition of TXB2 production correlated significantly with plasma levels of the drugs. Maximum inhibitory effect on aggregation was seen in response to collagen 1.5 pg/ml (63 ± 44% for d-indobufen and 81 ± 22% for dl-indobufen) and arachidonic acid 0.5-2 mM (78 ± 34% for d-indobufen and 88 ± 24% for dl-indobufen) at 2 h after each administration. An effect of both treatments on platelet aggregation after 12 h was present only for adrenaline 2 μM (55 ± 41% for d-indobufen and 37 ± 54% for dl-indobufen), collagen 1.5 pg/ml (69 ± 30% for d-indobufen and 51 ± 61% for dl-indobufen), arachidonic acid 0.5-2 mM (56 ± 48% for d-indobufen and 35 ± 49% for dl-indobufen). The extent of inhibition of TX production and the extent of residual platelet aggregation were never significantly different between treatments. Bleeding time prolongation was similar in the two treatment groups without showing a pronounced and long lasting effect (from 7.0 ± 2.0 min to 10.0 ± 3.0 min at 2 h and 8.0 ± 2.0 min at 12 h for d-indobufen; from 6.0 ±1.0 min to 8.5 ± 2.0 min at 2 h and 8.0 ± 1.0 min at 12 h for dl-indobufen). These results demonstrate that the biological activity of dl-indobufen as an antiplatelet agent in vivo is totally accounted for by d-indobufen.


Viruses ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 18
Author(s):  
Michèle Bergmann ◽  
Mike Holzheu ◽  
Yury Zablotski ◽  
Stephanie Speck ◽  
Uwe Truyen ◽  
...  

Measuring antibodies to evaluate dogs´ immunity against canine parvovirus (CPV) is useful to avoid unnecessary re-vaccinations. The study aimed to evaluate the quality and practicability of four point-of-care (POC) tests for detection of anti-CPV antibodies. The sera of 198 client-owned and 43 specific pathogen-free (SPF) dogs were included; virus neutralization was the reference method. Specificity, sensitivity, positive and negative predictive value (PPV and NPV), and overall accuracy (OA) were calculated. Specificity was considered to be the most important indicator for POC test performance. Differences between specificity and sensitivity of POC tests in the sera of all dogs were determined by McNemar, agreement by Cohen´s kappa. Prevalence of anti-CPV antibodies in all dogs was 80% (192/241); in the subgroup of client-owned dogs, it was 97% (192/198); and in the subgroup of SPF dogs, it was 0% (0/43). FASTest® and CanTiCheck® were easiest to perform. Specificity was highest in the CanTiCheck® (overall dogs, 98%; client-owned dogs, 83%; SPF dogs, 100%) and the TiterCHEK® (overall dogs, 96%; client-owned dogs, 67%; SPF dogs, 100%); no significant differences in specificity were observed between the ImmunoComb®, the TiterCHEK®, and the CanTiCheck®. Sensitivity was highest in the FASTest® (overall dogs, 95%; client-owned dogs, 95%) and the CanTiCheck® (overall dogs, 80%; client-owned dogs, 80%); sensitivity of the FASTest® was significantly higher compared to the one of the other three tests (McNemars p-value in each comparison: <0.001). CanTiCheck® would be the POC test of choice when considering specificity and practicability. However, differences in the number of false positive results between CanTiCheck®, TiterCHEK®, and ImmunoComb® were minimal.


1987 ◽  
Vol 113 (2) ◽  
pp. 183-192 ◽  
Author(s):  
C. H. G. Irvine ◽  
S. L. Alexander

ABSTRACT We have described a novel technique for collecting pituitary venous effluent in the horse by placing a cannula in the intercavernous sinus close to the outlet of the pituitary veins using a venous pathway unique to equids. Cannula placement and blood collection are carried out painlessly in fully conscious, ambulatory, unstressed animals. There is no interference to hypothalamic, pituitary or target organ function. The blood collected contains readily measurable concentrations of gonadotrophin-releasing hormone, and LH concentrations which can be up to 40 times those in concurrent peripheral blood samples. Four millilitre blood samples, a quantity which permits simultaneous measurement of many hypothalamic and pituitary hormones, can be collected at 2-min intervals for several days. Intercavernous sinus blood flow can be calculated allowing secretion rates of hypothalamic and pituitary hormones to be determined for any time-period. This model is uniquely useful for investigating the normal functional characteristics of several neuroendocrine and endocrine systems. J. Endocr. (1987) 113, 183–192


2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Maria P McGee ◽  
Michael Morykwas ◽  
James Jordan ◽  
Louis Argenta

Interstitial edema is an early response to myocardial ischemia, leading to fibrosis and remodeling in several heart failure conditions. We aimed to clarify whether osmotic, frictional, or mechanical forces drive fluid accumulation. Equilibrium and dynamic interstitial hydration parameters were determined, compared, and analyzed using osmotic stress approaches in explants from ischemic and nonischemic myocardial regions of pig heart. They were isolated after injury induced by ligating 3-4 branches of the left anterior descending coronary artery, for 85 min followed by 3 hours’ reperfusion. Their volume changed (Δ V max ) linearly with colloidosmotic pressure in both ischemic and nonischemic areas, yielding interstitial compliance values of 1.04 ± 0.09 and 1.08 ± 0.05 µl/g/ mmHg , which do not differ significantly, and hydration potentials from the abscissa intercepts at Δ V max = 0, of -121.4 ± 28 and -14.7 ± 7.6 mmHg, which do (mean ± SE, n = 5 , P-value = 0.001). These hydration potential differences manifest ex-vivo influx rates 8.5 ± 2.7- fold slower in ischemic than nonischemic myocardium. Surprisingly, interstitial flow resistance values derived from net-flow rates at an imposed pressure difference of 216 mmHg were 0.23 ± 0.08 and 0.19 ± 0.01 µl -1 . g. min and did not differ significantly between the areas. The similarity in interstitial compliance and fluid resistance indicates that the more negative hydration potential and faster efflux rates in at-risk regions after reperfusion are due to increased hydrostatic pressure rather than decreased osmotic or frictional forces. Tissue distends due to interstitial fluid accumulation against matrix mechanical forces, including elastic recoil of the collagen elastin mesh and fibroblast action, consistent with impaired drainage and persistent diastolic-like conditions during reperfusion of at-risk areas in vivo . These results indicate changes in pressure gradient magnitude and may have clinical and therapeutic implications; for example, reversal of paracrine interstitial flows during early remodeling


1999 ◽  
Vol 87 (3) ◽  
pp. 920-927 ◽  
Author(s):  
Kirby L. Zeman ◽  
Gerhard Scheuch ◽  
Knut Sommerer ◽  
James S. Brown ◽  
William D. Bennett

Effective airway dimensions (EADs) were determined in vivo by aerosol-derived airway morphometry as a function of volumetric lung depth (VLD) to identify and characterize, noninvasively, the caliber of the transitional bronchiole region of the human lung and to compare the EADs by age, gender, and disease. By logarithmically plotting EAD vs. VLD, two distinct regions of the lung emerged that were identified by characteristic line slopes. The intersection of proximal and distal segments was defined as VLDtransand associated EADtrans. In our normal subjects ( n = 20), VLDtrans [345 ± 83 (SD) ml] correlated significantly with anatomic dead space (224 ± 34 ml) and end of phase II of single-breath nitrogen washout (360 ± 53 ml). The corresponding EADtranswas 0.42 ± 0.07 mm, in agreement with other ex vivo measurements of the transitional bronchioles. VLDtrans was smaller (216 ± 64 ml) and EADtrans was larger (0.83 ± 0.04 mm) in our patients with chronic obstructive pulmonary disease ( n = 13). VLDtrans increased with age for children (age 8–18 yr; P = 0.006, n = 26) and with total lung capacity for age 8–81 yr ( P < 0.001, n = 61). This study extends the usefulness of aerosol-derived airway morphometry to in vivo measurements of the transitional bronchioles.


Sign in / Sign up

Export Citation Format

Share Document